
【YOLO 系列】YOLO详细解读(1):You Only Look Once: Unified, Real-Time Object Detection论文翻译+学习心得
我们提出的YOLO是一种新的目标检测方法。以前的目标检测方法通过重新利用分类器来执行检测。与先前的方案不同,我们将目标检测看作回归问题从空间上定位边界框(bounding box)并预测该框的类别概率。我们使用单个神经网络,在一次评估中直接从完整图像上预测边界框和类别概率。由于整个检测流程仅用一个网络,所以可以直接对检测性能进行端到端的优化。我们的统一架构速度极快。我们的基本 YOLO 模型以45 fps(帧 / 秒)的速度实时处理图像。该网络的一个较小版本——Fast YOLO,以155 fps。








