zomnlin
码龄4年
关注
提问 私信
  • 博客:6,923
    6,923
    总访问量
  • 6
    原创
  • 89,071
    排名
  • 99
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 毕业院校: 哈尔滨工程大学
  • 加入CSDN时间: 2020-10-26
博客简介:

zomnlin的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    53
    当月
    0
个人成就
  • 获得136次点赞
  • 内容获得0次评论
  • 获得182次收藏
创作历程
  • 6篇
    2024年
成就勋章
TA的专栏
  • YOLO系列
    1篇
  • 图像配准学习笔记
    1篇
兴趣领域 设置
  • 编程语言
    python
  • 人工智能
    深度学习tensorflowpytorch图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【YOLO 系列】YOLO详细解读(1):You Only Look Once: Unified, Real-Time Object Detection论文翻译+学习心得

我们提出的YOLO是一种新的目标检测方法。以前的目标检测方法通过重新利用分类器来执行检测。与先前的方案不同,我们将目标检测看作回归问题从空间上定位边界框(bounding box)并预测该框的类别概率。我们使用单个神经网络,在一次评估中直接从完整图像上预测边界框和类别概率。由于整个检测流程仅用一个网络,所以可以直接对检测性能进行端到端的优化。我们的统一架构速度极快。我们的基本 YOLO 模型以45 fps(帧 / 秒)的速度实时处理图像。该网络的一个较小版本——Fast YOLO,以155 fps。
原创
发布博客 2024.10.16 ·
739 阅读 ·
15 点赞 ·
0 评论 ·
27 收藏

【YOLO 系列】YOLO详细解读(1):YOLO系列简介

每个网格负责检测其中中心落在该网格内的目标。如果目标的中心在某个网格中,这个网格就负责预测该目标的边界框和类别。每个网格还会预测目标属于各个类别的概率。类别预测的数量与目标检测的类别数相等,通常通过Softmax输出。YOLO(You Only Look Once)是一种高效的目标检测算法,其核心思想是将目标检测视为一个。它直接通过卷积神经网络对整张图像进行处理,将输入图像划分为一个。,直接预测边界框和类别概率,而不依赖传统的区域建议方法。——持续更新,2024.10.16——
原创
发布博客 2024.10.16 ·
1036 阅读 ·
24 点赞 ·
0 评论 ·
30 收藏

【2024.9】windows深度学习环境配置踩坑指

cudnn也要对应,下载后解压到相应文件夹,详细看官方文档。cuda 下载链接:https://developer.nvidia.com/cuda-toolkit-archive。cudnn 下载链接:https://developer.nvidia.com/rdp/cudnn-archive。nvidia 下载链接:https://www.nvidia.cn/geforce/drivers/下载链接:https://www.anaconda.com/download/
原创
发布博客 2024.09.10 ·
1590 阅读 ·
22 点赞 ·
0 评论 ·
51 收藏

【AI教我读大学】如何成为‘钢铁侠’稚晖君的学习路径,学习地图

数学、物理与编程基础(线性代数、微积分、动力学、Python、C++)机器人学基础(运动学、动力学、传感器与执行器)控制理论(经典控制、现代控制、路径规划与控制)机器人操作系统与实际应用(ROS、SLAM、路径跟踪)深度学习与强化学习的应用(视觉、控制、协同机器人系统)实践项目与竞赛通过这一学习路径,你可以从基础知识逐渐深入到机器人控制的各个核心领域,最终具备开发复杂机器人系统的能力。
原创
发布博客 2024.09.06 ·
1545 阅读 ·
40 点赞 ·
0 评论 ·
29 收藏

【AI教我读大学】计算机视觉方面的学习路径,学习地图

数学、图像处理和编程基础(线性代数、微积分、图像处理、Python编程)图像处理与特征提取(边缘检测、特征提取、图像变换)机器学习与传统视觉算法(支持向量机、图像分割、对象检测)深度学习与卷积神经网络(CNN基础、迁移学习、深度学习框架)目标检测、语义分割与生成模型(目标检测、语义分割、GAN)强化学习与视觉控制系统(视觉感知、强化学习控制)实际项目与竞赛(实际应用、竞赛参与、开源贡献)
原创
发布博客 2024.09.06 ·
1491 阅读 ·
30 点赞 ·
0 评论 ·
35 收藏

【翻译】A comprehensive survey on deep active learning in medical image analysis

深度学习下的医学图像配准综述
原创
发布博客 2024.07.27 ·
508 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏