邹小驴

风雨前行,梦在远方。

相对熵,kl散度

内容解释博客 https://blog.csdn.net/ACdreamers/article/details/44657745 https://blog.csdn.net/chdhust/article/details/8506260 python代码实现相对熵 https://blog...

2019-08-02 09:45:22

阅读数 9

评论数 0

如何区分并记住常见的几种 Normalization 算法

https://zhuanlan.zhihu.com/p/69659844

2019-07-26 15:33:19

阅读数 18

评论数 0

核函数&径向基核函数 (Radial Basis Function)--RBF

https://blog.csdn.net/huang1024rui/article/details/51510611 https://www.cnblogs.com/jerrylead/archive/2011/03/18/1988406.html(核函数)

2019-07-25 09:53:19

阅读数 23

评论数 0

特征工程专题

https://blog.csdn.net/Datawhale/article/details/83033869

2019-07-18 08:25:41

阅读数 16

评论数 0

理解logistic回归原理解释

需要的知识储备: 概率论中的——似然函数求解 数学的求导公式——以及倒数求导。 1. logistic分布的概念,如下图 分布其实就是概率值。 logistic分布为什么常用呢?因为它的分布曲线,在中心附近增长很快,而在两端增长很慢。这就是说,若以概率0.5(中心点z=μ处的分布概率...

2019-07-08 10:17:35

阅读数 19

评论数 0

支持向量机理解

https://blog.csdn.net/v_JULY_v/article/details/7624837

2019-07-08 08:21:37

阅读数 29

评论数 0

one-hot向量编码

one-hot向量将类别变量转换为机器学习算法易于利用的一种形式的过程,这个向量的表示为一项属性的特征向量,也就是同一时间只有一个激活点(不为0),这个向量只有一个特征是不为0的,其他都是0,使特征变得稀疏。 举个人的特征,比如:“性别”这个人的特征,性别有“男性”、“女性”,这个特征有两个特征...

2019-07-02 20:27:48

阅读数 32

评论数 0

机器学习的学习过程与进阶

https://github.com/apachecn/AiLearning

2019-04-24 10:16:59

阅读数 9

评论数 0

机器学习中——感知机中

不考虑的原因有两点: 1:恒为正,不影响 正负的判断,也就是不影响学习算法的中间过程。因为感知机学习算法是误分类驱动的(只有当出现误分类时才去调整模型,或者说损失函数只与误分类点有关),这里需要注意的是,所谓的“误分类驱动”指的是我们只需要判断 的正负来判断分类的正确与否,而并不影响正负值的判断...

2019-04-08 22:17:24

阅读数 13

评论数 0

机器学习研究比较好的大牛

https://zhuanlan.zhihu.com/p/35940466

2018-11-12 16:04:05

阅读数 290

评论数 0

提示
确定要删除当前文章?
取消 删除