http://poj.org/problem?id=2975
在经典Nim游戏中,先手有多少种取胜方法?
经典算法中,XOR=k0^k1^…^kn-1,若为0,则先手必败,否则必胜。在必胜态时,先手要做的就是拿走某堆石头中的m个,使得XOR变为0,将必败态转嫁给后手,题目就是在问有几种使XOR变为0的方法。
假设从第i堆石头拿走m块就是这些方法中的一种,则有(ki-m)^(XOR^ki)=0。这里(ki-m)代表第i堆石头拿走m块剩余的部分,(XOR^ki)代表从XOR中去掉ki这一项,因为一个数连续异或两遍任意数都保持不变。
再来看(ki-m)^(XOR^ki)=0,若两个数异或后结果为0,则说明这两个数相等(每一个比特都相等)。于是ki-m=XOR^ki,也即m=ki-XOR^ki。同时m必须满足1≤m≤ki,所以ki>XOR^ki,如此才能为第i堆石头带来一个可行解。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <numeric>
#include <algorithm>
using namespace std;
int n;
int a[1005];
int main(){
while (cin >> n && n){
for (int i=0;i<n;i++){
cin >> a[i];
}
int XOR=0;
for (int i=0;i<n;i++){
XOR^=a[i];
}
int ans=0;
for (int i=0;i<n;i++){
if (a[i]>(XOR^a[i])){
ans++;
}
}
cout << ans << endl;
}
}