AppInventor2开发的App上架必备之《隐私政策》

// AppInventor2开发的App上架步骤 //

apk不报病毒,通过腾讯管家检测是App上架的第一步。当然,上架的App是需要申请软件著作权(软著)证书,如何申请这个后续会介绍,本文暂时略过。

AppInventor2中文网.apk已通过腾讯管家检测,不再报病毒

其次包名也很重要,是整个应用市场唯一的标识符,工信部备案也需要:

AppInventor2定制安卓包名

其次上架必须准备一个《隐私政策》在线网页url,告知用户你如何访问及访问隐私权限的用途,包括相机、存储、定位等权限。App中用到的权限都需要在网页中有明确的说明,如果App有消息推送功能,也需要说明,并且必须在App的设置中有关闭推送的开关选项,否则无法通过审核!

这个隐私政策网页可以参考其他app的,可以使用AI来写,然后自己细化一下,App权限说明相关的地方一定要详细说明,其他的倒是比较常规,大家都大同小异。

// AppInventor2隐私政策拓展 //

弹窗效果 

比如我们的隐私政策网页url:https://www.fun123.cn/static/privacy_policy.html,一个代码块搞定:

图片

效果如下:

图片

用户点击“同意”才能正常进入App,否则直接退出App。

用户同意之后,会记住这个状态,后续就不再弹窗提醒。App升级不会重置这个状态,只有在App卸载后重新安装,才能重新提醒

如果用户点“不同意”则48小时内(工信部规定)不允许再请求任何权限,弹窗提醒用户手动在设置中开启权限。这个逻辑我们也做进了拓展中。

隐私政策网页 

如果有自己的网站那是最好,没有的话一般采用托管的方式:

托管平台

特点

推荐指数

Notion

免费

★★★★☆

github.io

免费,但国内访问可能不太稳定

★★★★

国内云厂商OSS

存储白菜价,流量费约 0.5元/GB,各家价格都大差不差,访问速度非常快

★★★★

coding.net

静态页0.06元/月

★★

各App上架平台的云托管

收费

gitee.io

免费,但已停止服务

不仅如此,还需要在App界面上显式提供“隐私政策”的链接,用户可以随时点击查看,参考如下:

图片

以上介绍了App上架时“隐私政策”相关的审核点,为了保护用户的隐私,可以说是相当的严格,不过这些复杂的审核点我们都已经封装到拓展中了,一个代码块就能搞定!

除此之外,后续还有其他的步骤及审核卡点,持续更新中~

原文:https://www.fun123.cn/reference/extensions/PrivacyPolicyAI2Ext.html

内容概要:本文围绕基于支持向量机的电力短期负荷预测方法展开基于支持向量机的电力短期负荷预测方法研究——最小二乘支持向量机、标准粒子群算法支持向量机与改进粒子群算法支持向量机的对比分析(Matlab代码实现)研究,重点对比分析了三种方法:最小二乘支持向量机(LSSVM)、标准粒子群算法优化的支持向量机(PSO-SVM)以及改进粒子群算法优化的支持向量机(IPSO-SVM)。文章详细介绍了各模型的构建过程与优化机制,并通过Matlab代码实现对电力负荷数据进行预测,评估不同方法在预测精度、收敛速度和稳定性方面的性能差异。研究旨在为电力系统调度提供高精度的短期负荷预测方案,提升电网运行效率与可靠性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的科研人员、电气工程及相关专业的研究生或高年级本科生;对机器学习在能源领域应用感兴趣的技术人员。; 使用场景及目标:①应用于电力系统短期负荷预测的实际建模与仿真;②比较不同优化算法对支持向量机预测性能的影响;③为相关课题研究提供可复现的代码参考和技术路线支持。; 阅读建议:建议读者结合文中提供的Matlab代码,深入理解每种支持向量机模型的参数设置与优化流程,动手实践以掌握算法细节,并可通过更换数据集进一步验证模型泛化能力。
【源码免费下载链接】:https://renmaiwang.cn/s/qaiji 18、MapReduce的计数器与通过MapReduce读取_写入数据库示例网址: input files to process”表示处理的总输入文件数量,“number of splits”指示文件被分割成多少个块进行处理,“Running job”显示作业的状态等。自定义计数器则是开发者根据实际需求创建的,用于跟踪特定任务的特定指标。开发者可以在Mapper或Reducer类中增加自定义计数器,然后在代码中增加计数器的值。这样,当作业完成后,可以通过查看计数器的值来分析程序的行为和性能。接下来,我们将讨论如何通过MapReduce与数据库交互,尤其是MySQL数据库。在大数据场景下,有时需要将MapReduce处理的结果存储到关系型数据库中,或者从数据库中读取数据进行处理。Hadoop提供了JDBC(Java Database Connectivity)接口,使得MapReduce作业能够与数据库进行连接和操作。要实现MapReduce读取数据库,首先需要在Mapper类中加载数据库驱动并建立连接。然后,可以在map()方法中使用SQL查询获取所需数据。在Reduce阶段,可以对数据进行进一步处理和聚合,最后将结果写入到数据库中。对于写入数据库,通常在Reducer类的reduce()方法或cleanup()方法中进行,将处理后的数据转换为适合数据库存储的格式,然后通过JDBC API执行插入、更新或删除等操作。需要注意的是,由于MapReduce作业可能涉及大量的数据写入,因此需要考虑数据库的并发处理能力和性能优化策略。总结一下,MapReduce的计数器提供了强大的监控和调试能力,而通过MapReduce与数据库的交互则扩展了大数据处理的应用场景。开发者可以根据需求利用计数器来优化作业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI2中文网

真诚赞赏,手留余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值