吴恩达 深度学习

目录

浅层网络

多样本W b  X Z A矩阵向量解析


浅层网络

             

表示输入特征,表示每个神经元的输出,表示特征的权重,上标表示神经网络的层数(隐藏层为1),下标表示该层的第几个神经元。

一个神经元相当于进行一次逻辑回归   含有w 转置后1*n  n为前面的特征数 或者说神经元数向量

                                                                     x(n*1)样本  b(1*1)偏置

上面是针对一个样本的

 

 

多样本W b  X Z A矩阵向量解析

Z[1][2]:第一层神经元 第二个样本的结果          Z[1][m]:第一层神经元  第m个样本的结果 

每一列对应其中一个样本的第一层 的结果     (一个样本在经历一层后 映射结果不止一个)

 

W[n]  为矩阵          行为神经元个数                                         列为样本特征数 或者 前一个神经层神经元个数

b:为向量  一列        行为神经元数  

X[n_x][m]: 为矩阵   行为神经元数(特征数)                             一列代表一个样本 总列数为样本总数

Z:为矩阵                 行位神经元数(每个神经元输出的结果)    一列代表一个样本的结果

A:加激活函数的Z

对于Z A X横向是样本数   竖向是不同节点     W横向是样本特征数  纵向是节点数

激活函数选择规则:如果输出值是0,1做二分类 sigmoid很适合做激活函数

                                其他都用Relu   max(0,n) >0导数为1  小于0导数为0   rectify linear unit 修正线性单元

 

 

激活函数

  tanh函数效果总是优于sigmoid函数。因为函数值域在-1和+1的激活函数,其均值是更接近零均值的。在训练一个算法模型时,如果使用tanh函数代替sigmoid函数中心化数据,使得数据的平均值更接近0而不是0.5.

在讨论优化算法时,有一点要说明:我基本已经不用sigmoid激活函数了,tanh函数在所有场合都优于sigmoid函数。对隐藏层使用tanh激活函数,输出层使用sigmoid函数。

但有一个例外:在二分类的问题中,对于输出层,因为的值是0或1,所以想让的数值介于0和1之间,而不是在-1和+1之间。所以需要使用sigmoid激活函数

sigmoid函数和tanh函数两者共同的缺点是,在特别大或者特别小的情况下,导数的梯度或者函数的斜率会变得特别小,最后就会接近于0,导致降低梯度下降的速度。

在机器学习另一个很流行的函数是:修正线性单元的函数(ReLu) 所以,只要是正值的情况下,导数恒等于1,当是负值的时候,导数恒等于0。从实际上来说,当使用的导数时,=0的导数是没有定义的。但是当编程实现的时候,的取值刚好等于0.00000001,这个值相当小,所以,在实践中,不需要担心这个值,是等于0的时候,假设一个导数是1或者0效果都可以

一些选择激活函数的经验法则:

如果输出是0、1值(二分类问题),则输出层选择sigmoid函数,然后其它的所有单元都选择Relu函数。

这是很多激活函数的默认选择,如果在隐藏层上不确定使用哪个激活函数,那么通常会使用Relu激活函数。有时,也会使用tanh激活函数,但Relu的一个优点是:当是负值的时候,导数等于0。

这里也有另一个版本的Relu被称为Leaky Relu。当是负值时,这个函数的值不是等于0,而是轻微的倾斜 这个函数通常比Relu激活函数效果要好,尽管在实际中Leaky ReLu使用的并不多。Leaky Relu=max(0.001Z,Z)

 

两者的优点是:

第一,在的区间变动很大的情况下,激活函数的导数或者激活函数的斜率都会远大于0,在程序实现就是一个if-else语句,而sigmoid函数需要进行浮点四则运算,在实践中,使用ReLu激活函数神经网络通常会比使用sigmoid或者tanh激活函数学习的更快。

第二,sigmoidtanh函数的导数在正负饱和区的梯度都会接近于0,这会造成梯度弥散,而ReluLeaky ReLu函数大于0部分都为常数,不会产生梯度弥散现象。(同时应该注意到的是,Relu进入负半区的时候,梯度为0,神经元此时不会训练,产生所谓的稀疏性,而Leaky ReLu不会有这问题)

ReLu的梯度一半都是0,但是,有足够的隐藏层使得z值大于0,所以对大多数的训练数据来说学习过程仍然可以很快。

ReLu的梯度一半都是0,但是,有足够的隐藏层使得z值大于0,所以对大多数的训练数据来说学习过程仍然可以很快。

快速概括一下不同激活函数的过程和结论。

sigmoid激活函数:除了输出层是一个二分类问题基本不会用它。

tanh激活函数:tanh是非常优秀的,几乎适合所有场合。

ReLu激活函数:最常用的默认函数,,如果不确定用哪个激活函数,就使用ReLu或者Leaky ReLu

为什么常数是0.01?当然,可以为学习算法选择不同的参数。

在编写神经网络的时候,会有很多选择:隐藏层单元的个数、激活函数的选择、初始化权值……这些选择想得到一个对比较好的指导原则是挺困难的

自己的神经网络的应用,以及其特殊性,是很难提前知道选择哪些效果更好。

所以通常的建议是:如果不确定哪一个激活函数效果更好,可以把它们都试试,然后在验证集或者发展集上进行评价。然后看哪一种表现的更好,就去使用它

 

 

 

为什么要用非线性函数

事实证明如果你在隐藏层用线性激活函数,在输出层用sigmoid函数,那么这个模型的复杂度和没有任何隐藏层的标准Logistic回归是一样的

在这里线性隐层一点用也没有,因为这两个线性函数的组合本身就是线性函数,所以除非你引入非线性,否则你无法计算更有趣的函数,即使你的网络层数再多也不行;只有一个地方可以使用线性激活函数------,就是你在做机器学习中的回归问题 

总而言之,不能在隐藏层用线性激活函数,可以用ReLU或者tanh或者leaky ReLU或者其他的非线性激活函数,

唯一可以用线性激活函数的通常就是输出层;除了这种情况,会在隐层用线性函数的,除了一些特殊情况,比如与压缩有关的

因为房价都是非负数,所以我们也可以在输出层使用ReLU函数这样你的都大于等于0

四种激活函数求导如下:

 两层神经网络反向推导:

 

构建神经网络:

提醒:构建神经网络的一般方法是:

Ps:对于建立一个神经网络的通用过程如下:

Step1:设计网络结构,例如多少层,每层有多少神经元等。

Step2:初始化模型的参数

Step3:循环

    Step3.1:前向传播计算

    Step3.2:计算代价函数

    Step3.3:反向传播计算

    Step3.4:更新参数

接下来,我们就逐个实现这个过程中需要用到的相关函数,并整合至nn_model()中。

当nn_model()模型建立好后,我们就可以用于预测或新数据集的训练与使用。

提示:使用X和Y的形状来查找n_x和n_y。 此外,硬编码隐藏的图层大小为4。

代码:https://www.missshi.cn/api/view/blog/59abda2fe519f50d0400018f

 

 

深度神经网络:

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值