学习笔记:结构化概率模型

##1.什么是结构化概率模型

"结构化概率模型"(structured probabilistic model),是一类用图形模式表达基于概率相关关系的模型的总称,也称“图模型”(graphical model)英文简称,PGM 

概率图模型具有图论概率论两大理论基础,是生成模型的基础。因此它可以很好地表现运动特征、实体(中间语义)及行为之间的关系,可以为人体行为描述提供了一个自然结构。概率图模型不仅能准确描述视频中复杂概率现象的统计学本质,而且可以控制模型的计算代价,形成有效的生成算法。

##2.用图描述的二种重要的,结构化概率模型

结构化概率模型使用图来表示随机变量之间的相互作用。每一个结点就代表一个随机变量。每一条边就代表一个直接相互作用,这些直接相互作用隐含着其他的间接相互作用,但是只有直接的相互作用会被显式的建模

@@1.有向模型

有向图模型,也被称为信念网络或者贝叶斯网络。

 有向(directed)模型 使用带有有向边的图,它们用条件概率分布来表示分解,有向模型对于分布中的每个随机变量Xi都包含着一个影响因子,这个组成Xi条件概率的影响因子被称为Xi的父节点,记为PaG(Xi)。

                                                  

                 下图给出了一个有向图的例子以及表示它的概率分布分分解。

 

 

                                                                 

                                                                                    图1

            图1,关于随机变量a、b、c、d和e的有向图模型。这幅图对应的概率分布可以分解为

                                                   p(a,b,c,d,e)= p(a)p(b|a)p(c|a,b)p(d|b)p(e|c)  (2)

该图模型使我们能够快速看出此分布的一些性质。例如,a和c直接相互影响,但a和e只有通过c间接相互影响。

@@2.无向模型

无向模型,马尔科夫随机场( Markov random fields ),也被称为无向图模型( undirected graphical models )。这个模型中,链接没有箭头,没有方向性质。

 

 

 

 

 

 

 

Statistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics and blends with parallel developments in computer science and, in particular, machine learning. The field encompasses many methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines. With the explosion of “Big Data” problems, statistical learning has be- come a very hot field in many scientific areas as well as marketing, finance, and other business disciplines. People with statistical learning skills are in high demand. One of the first books in this area—The Elements of Statistical Learning (ESL) (Hastie, Tibshirani, and Friedman)—was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statis- tics but also in related fields. One of the reasons for ESL’s popularity is its relatively accessible style. But ESL is intended for individuals with ad- vanced training in the mathematical sciences. An Introduction to Statistical Learning (ISL) arose from the perceived need for a broader and less tech- nical treatment of these topics. In this new book, we cover many of the same topics as ESL, but we concentrate more on the applications of the methods and less on the mathematical details. We have created labs illus- trating how to implement each of the statistical learning methods using the popular statistical software package R . These labs provide the reader with valuable hands-on experience.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荣•厚德载物

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值