模型区分度指标KS值

ks值的直观理解:识别率(真阳率)- 误判率(假阳率)

就是需要模型更多的识别出好人,更少的将坏人认做好人!

ks曲线是roc曲线派生出来的,是roc中的一个点,是在确定了分类阈值之后画出来的。

 

有效性指标中的区分能力指标:

KS(Kolmogorov-Smirnov):KS用于模型风险区分能力进行评估, 
指标衡量的是好坏样本累计分部之间的差值。 
好坏样本累计差异越大,KS指标越大,那么模型的风险区分能力越强。

KS的计算步骤如下: 
1. 计算每个评分区间的好坏账户数。 
2. 计算每个评分区间的累计好账户数占总好账户数比率(good%)和累计坏账户数占总坏账户数比率(bad%)。 
3. 计算每个评分区间累计坏账户占比与累计好账户占比差的绝对值(累计good%-累计bad%),然后对这些绝对值取最大值即得此评分卡的K-S值。

判断:依据经验,ks值大于0.3说明模型的区分力比较好,ks值大于0.2模型可用,但是区分力较差;ks值小 于0.2大于0,模型的区分力差不可用; 如果ks值为负数,说明评分与好坏程度相悖,模型出现错误。ks指标的缺点是:只能表示 区分度最好的分数的区分度,不能衡量其他分数。

è¿éåå¾çæè¿°
参考:

【模型 区分度】神秘的KS值和GINI系数

python实现ks值计算:

 

展开阅读全文

没有更多推荐了,返回首页