额外1.环境CUDA10.0+CUDNN7.6.5+tensorflow-gpu1.13.1+python3.7
1.1查看CUDA(10.0)

1.2查看CUDNN(7.6.5)
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include
用编辑器打开cudnn.h

1.3安装虚拟环境
1.3.1打开开始菜单中 adaconda3文件夹下Anaconda Prompt 程序

1.3.2
conda create -n tensorflow-gpu python=3.7

1.3.3安装依赖
conda activate tensorflow-gpu

pip install tensorflow-gpu==1.13.1
pip install pillow
pip install requests
pip install scipy
2.运行代码
2.1下载代码
git clone https://github.com/NVlabs/stylegan.git
cd stylegan

2.2新建datasets目录与photos目录(里面存放的是我的相片,注意需要尺寸一样)

2.2.1把数据集转换未TFRecords格式
在根目录下运行
python dataset_tool.py create_from_images datasets/custom_dataset photos

完成后会在datasets目录下生成一个custom_dataset文件夹,内部有好几个TFRecords文件,如图

2.3修改train.py文件
desc += ‘-custom_dataset’; dataset = EasyDict(tfrecord_dir=‘custom_dataset’, resolution=128); train.mirror_augment = False
desc += ‘-1gpu’; submit_config.num_gpus = 1; sched.minibatch_base = 4; sched.minibatch_dict = {4: 128, 8: 128, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8, 512: 4}
把

改成

3.执行训练
运行python train.py

出现这个training…的时候,就代表正在训练啦!
训练完成,results目录如图

4.查看训练效果
4.1修改pretrained_example.py文件
把

修改成
url = os.path.abspath(‘results/00001-sgan-custom_dataset-1gpu/network-snapshot-000140.pkl’)
with open(url, ‘rb’) as f:
_G, _D, Gs = pickle.load(f)

4.2运行代码
python pretrained_example.py


在results文件夹下生成example.png的图片
因为显卡是NVIDIA GeForce GTX 1070受限于设备,所以以上只是测试下这个过程。

微信号:herry7788
255

被折叠的 条评论
为什么被折叠?



