【DeepLearning】正则化中的weight decay momentum normalization比较和对比

一、weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,
所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大。
Weight decay 就是在进行梯度下降时用一个 r值(介于 0 到 1 之间)乘以当前计算中的每一个weight 。

二、momentum是梯度下降法中一种常用的加速技术。对于一般的SGD,其表达式为
沿负梯度方向下降。而带momentum项的SGD则写生如下形式:
即momentum系数,通俗的理解上面式子就是,如果上一次的momentum(即
与这一次的负梯度方向是相同的,那这次下降的幅度就会加大,所以这样做能够达到加速收敛的过程。

三、normalization。如果我没有理解错的话,题主的意思应该是batch normalization吧。batch normalization的是指在神经网络中激活函数的前面,将
按照特征进行normalization,这样做的好处有三点:
1、提高梯度在网络中的流动。Normalization能够使特征全部缩放到[0,1],这样在反向传播时候的梯度都是在1左右,避免了梯度消失现象。
2、提升学习速率。归一化后的数据能够快速的达到收敛。
阅读更多
个人分类: DeepLearning
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭