基于opencv光心检测算法

光心检测算法思路有两种:

1.通过灰度值检测,利用了模组的shading信息,将图片进行3*3区域均值划分,然后将所有均值相等的块block进行connection,然后寻找多边形的质心。

2.直接求取图片的亮度的重心。

算法思路很简单,但实际项目中要求检测算法要有很高的精度,控制在2pixel。此时就要加入计算结果过程的控制,这才是重点。

CS-DN的字数字数审查:

附录其他方法:

光心,是厚透镜近轴光线中,入射线和与其对应且相平行的出射线构成共轭光线,其入射点与出射点的连线和主光轴的交点,称为厚透镜的光心。焦距,也称为焦长,是光学系统中衡量光的聚集或发散的度量方式,指从透镜中心到光聚集之焦点的距离。亦是照相机中,从镜片光学中心到底片、CCD或CMOS等成像平面的距离。具有短焦距的光学系统比长焦距的光学系统有更佳聚集光的能力。焦点,在物理学上指平行光线经透镜折射或曲面镜反射后的会聚点,在数学上指二次曲线的焦点

光心

optical center

凹透镜的光心就是两折射面中心重合之点,也是节点主点的重合之点。当物方和象方空间媒质折射率相同时,通过凹透镜光心的入射点与出

射点的连线和主光轴的交点,称为厚透镜的光心。

从图中可知:O为光心,F为焦点。每个透镜主轴上都有一个特殊点,凡是通过该点的光,其传播方向不变,这个点叫光心。

特点:经过光心的光线的传播方向不会发生改变

1公开一种摄像头光心测试方法,包括以下步骤:准备好测试架和TV显微镜;使LED面板固定板,测试Chart图固定板和模组固定板为水平设置;在LED面板固定板上放置LED面板,在测试Chart图放置孔内放置测试Chart图,把模组放到模组固定支架内,通过快速压紧机构下压把模组压紧;启动LED面板的光源,把TV显微镜滑动到指定位置进行观察测试Chart图中心的"十字线",镜头组的光心和芯片的中心重合情况来判断产品是否合格;检测完后把快速压紧机构和TV显微镜复位,取出测试完的模组放到指定位置即可.本发明采用测试架来固定模组,测试Chart图和LED面板光源,通过TV显微镜来测试模组是否合格;其测试方法简单,操作方便,检测准确,解决了摄像头的模组测试不准确的问题。

2公开一种镜头光心的检测方法及装置,其中,镜头光心的检测方法包括以下步骤:获取所述镜头拍摄标准图像所得的成像图像,其中,所述标准图像为单色均匀图像;在所述成像图像中选取至少两个感兴趣区域,其中,所述感兴趣区域对应的子成像图像为非均匀图像;确定各所述感兴趣区域的明暗交界位置;根据各所述感兴趣区域在所述成像图像中的位置以及各所述感兴趣区域的明暗交界位置,确定所述镜头的光心.本发明技术方案提高了镜头光心检测的准确性

首先,在Python中安装OpenCV库。在终端输入以下命令: ``` pip install opencv-python ``` 接下来,我们可以使用以下代码来实现基于OpenCV的人脸检测算法: ```python import cv2 # 加载分类器 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 加载图像 img = cv2.imread('test.jpg') # 转换为灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) # 在图像中标记人脸 for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) # 显示图像 cv2.imshow('img', img) cv2.waitKey() ``` 解释一下代码: 1. 加载分类器:我们使用OpenCV内置的CascadeClassifier函数来加载人脸检测分类器。这里使用的是`haarcascade_frontalface_default.xml`,你可以在OpenCV官网上找到并下载其他分类器。 2. 加载图像:我们使用`cv2.imread()`函数来加载测试图像。 3. 转换为灰度图像:我们将图像转换为灰度图像,因为分类器需要输入灰度图像。 4. 检测人脸:我们使用`detectMultiScale()`函数来检测人脸。`scaleFactor`和`minNeighbors`参数可以调整检测的精度和速度。 5. 标记人脸:我们使用`cv2.rectangle()`函数在图像中标记人脸。 6. 显示图像:最后,我们使用`cv2.imshow()`和`cv2.waitKey()`函数来显示图像,并等待用户按下任意键关闭窗口。 这就是基于OpenCV的人脸检测算法的实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Camera Man

知识无价,但打赏不要超过早饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值