有向图 MST 最小树形图 刘朱算法

复杂度 n^3

在一个有向图中寻找最小生成树,即加入所选边使得源点可以到达任一点

如果没有源点,可以考虑认为加入一个源点,视题目而定

const int maxn = 120;
const double inf = 1000000000;
struct Edge{
	int u, v;
	double w;
	void Get( int a, int b, double c)
	{
		u = a;	v = b;	w = c;
	}
}edge[maxn*maxn];
double dist[maxn];
int n, r, pre[maxn], belong[maxn], vis[maxn];
double edmonds( int src )
{
	double ret = 0;
	int u, v, i, scnt;
	while( true )
	{
		for(i = 0; i < n; i++)dist[i] = inf;
		for(i = 0; i < r; i++)
		{
			u = edge[i].u;
			v = edge[i].v;
			if(edge[i].w < dist[v] && u != v)
			{
				pre[v] = u;
				dist[v] = edge[i].w;
			}
		}
		for(i = 0; i < n; i++)
		{
			if(i == src)continue;
			if(dist[i] == inf)return -1;
		}

		scnt = 0;
		memset(belong, -1, sizeof(belong));
		memset(vis, -1, sizeof(vis));
		dist[src] = 0;
		for(i = 0; i < n; i++)
		{
			ret += dist[v = i];
			while(vis[v] != i && belong[v] == -1 && v != src)
			{
				vis[v] = i;
				v = pre[v];
			}
			if(v != src && belong[v] == -1)
			{
				for(u = pre[v]; u != v; u = pre[u])
					belong[u] = scnt;
				belong[v] = scnt++;
			}
		}
		if(scnt == 0)break;
		for(i = 0; i < n; i++)if(belong[i] == -1)
			belong[i] = scnt++;

		for(i = 0; i < r; i++)
		{
			v = edge[i].v;
			edge[i].u = belong[edge[i].u];
			edge[i].v = belong[edge[i].v];
			if(edge[i].u != edge[i].v)
				edge[i].w -= dist[v];  // *
		}
		n = scnt;
		src = belong[src];
	}
	return ret;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值