E. Phoenix and Computers(组合+计数dp)

本文探讨了一种动态规划解决方案,用于计算在特定条件下电脑自动开机的序列数。通过对连续序列的分析,利用组合数学中的二项式定理,得出O(n^3)复杂度的算法。此外,还提及了一个更高效的O(n^2)算法,但作者表示自己未能理解其工作原理。文章中提供了C++代码实现,并进行了预处理优化。
摘要由CSDN通过智能技术生成

https://codeforces.com/problemset/problem/1515/E


思路:

首先会发现结果的序列方案数会是一段连续的,一个空的,一段连续的,那我们要先知道一段连续的方案数是多少。

枚举从哪一台电脑开始打开

如果从 1 开始,那么剩下的必须按照 2,3,…,n的顺序打开。(如果不按照这个顺序,就会有电脑自动开启) 方案数为1

如果从 2开始,那么 2 的右边必须按从左往右的顺序开启,即 3,4,…,n而 1 可以在这其中任意时刻开启。   后面那么多数的位置插一个空 C(k-1,1)

如果从3开始,那么2的右边必须按左到右的顺序开启,即 4 5 6,,,n。但是1 2可以随意插进去,但必须保证1 和2 的相对顺序不变。

那么此时的方案数是多少?

举个例子1 2 3 4 5,现在枚举3开始, 右边还有4 5,左边要1 2。方案数一共有4个位置待选,我们任意选择两个位置,C(4,2),代表给1 2定两个位置。此时发现,4 5只有一种顺序,所以剩下的坑的位置是已经固定了。C的定义,位置和顺序无关,也就是4 5或者5 4在这两个位置的顺序是只算一遍的,和题意符合,因为4 5满足的答案只有一种顺序。

那么对应这个方案数就是C(K-1,2)

总和起来就是:C(n−1,0)​+C(n−1,1)​+C(n−1,2​)+…+C(n−1,n−1)​=2^n−1  就是高中的二项式展开。

 

那么这时候再来考虑一段一段的方案数怎么统计。

dp[len][cnt]:表示当前开了len个灯,其中第len个是自动开的,有 cnt个是手动开的。

那么顺推的转移就是 dp[len+k+1] [cnt+k] = Σdp[len][k]*2^(k-1)*C(cnt+k,k)

再枚举开k盏灯,此时len+k+1按照定义就是自动开的,对于开出的连续k盏,刚才的结论就是2^(k-1)。然后总共开了cnt+k个,里面k个新开的随意放哪个顺序最后答案都是符合的。

由于n^3logn太大,组合数部分预处理。

O(n^3)

不过我还看到了O(n^2)的插头dp.....(太菜了不会阿

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=4e2+100;
typedef long long LL;
inline LL read(){LL x=0,f=1;char ch=getchar();	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
LL fac[maxn];
LL dp[maxn][maxn];
LL c[maxn][maxn];
LL n,mod;
void pre(){
     c[0][0]=1;
     for(LL i=1;i<maxn;i++){
         for(LL j=0;j<=i;j++){
             c[i][j]=(c[i-1][j-1]%mod+c[i-1][j]%mod)%mod;
         }
     }
}
int main(void){
   cin.tie(0);std::ios::sync_with_stdio(false);
   cin>>n>>mod;
   fac[0]=1;
   for(LL i=1;i<maxn;i++) fac[i]=fac[i-1]*2%mod;
   pre();
   dp[0][0]=1;
   for(LL len=0;len<=n;len++){
       for(LL cnt=0;cnt<=len;cnt++){
           for(LL k=1;len+k<=n;k++){
               dp[len+k+1][cnt+k]+=( ( (dp[len][cnt]%mod*fac[k-1]%mod)%mod*c[cnt+k][k])%mod)%mod;
           }
       }
   }
   LL ans=0;
   for(LL cnt=0;cnt<=n;cnt++){
       ans=(ans%mod+dp[n+1][cnt]%mod)%mod;
   }
   cout<<ans<<"\n";
   return 0;
}

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值