自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小白兔de窝

心平气和,不起执念。

  • 博客(46)
  • 论坛 (6)
  • 收藏
  • 关注

原创 算法:实现链表存储的回文字符串判断

题目:如何判断一个单链表结构的字符串是否是回文字符串。例如,“123454321”,返回“yes”;“12345”,返回“false”可执行代码:isPalindrome.cpp#include #include #includeusing namespace std; typedef struct node{ int data; struct n

2016-03-31 15:58:46 727

原创 算法:备忘

关于海量数据处理的各种常用数据结构浅谈http://www.cnblogs.com/dong008259/archive/2012/02/17/2355551.html知乎精贴:https://www.zhihu.com/question/35485418KMP原理  http://m.blog.csdn.net/article/details?id=6525256KMP实

2016-03-30 14:47:25 525

原创 算法:经典leetcode算法题解

1. Patching Array 补丁数组(考虑ing)原题描述:https://leetcode.com/problems/patching-array/给定一个有序正整数数组nums以及一个整数n,向数组中添加/补充一些元素,使其“部分元素和”可以组成范围[1, n]内的所有数字。返回最少需要添加的元素个数。Example 1:nums = [1, 3], n = 6

2016-03-30 13:50:16 2030

原创 算法:动态规划经典题目

做一个简单整理与汇总。详情见给出的链接。算法之美:动态规划1. 最大子数组和问题——O(N)关键思路:考虑数组的第一个元素,以及最大的一段数组(A[i], ..., A[j]),和A[0]的关系,有一下几种情况:(1)当0 = i = j 时,元素A[0]本身构成和最大的一段;        (2)当0 = i (3)当0 核心代码:单层for循环

2016-03-29 16:00:21 4623

原创 机器学习:特征工程

特征选择直接影响模型灵活性、性能及是否简洁。好特征的灵活性在于它允许你选择不复杂的模型,同时运行速度也更快,也更容易理解和维护。特征选择四个过程:产生过程,评价函数,停止准则,验证过程。目的:过滤特征集合中不重要特征,挑选一组最具统计意义的特征子集,从而达到降维的效果。选择标准:特征项和类别项之间的相关性(特征重要性)。- - -搜索特征子空间的

2016-03-27 22:16:41 2769

原创 机器学习:核函数的一个小题目

题目:给一百万个三角形,再给一个点,判断在不在某个三角形内。解法1:RTree解法2:核函数映射。使得二维空间线性不可分的情况变为三维或四维空间线性可分的。----------------------------------------------------------------------(1)首先介绍核函数。核函数指所谓径向基函数(Radial Basis Functi

2016-03-27 11:50:30 8947

转载 机器学习:梯度Boost决策树

Gradient Boost Decision TreeGBDT是一个应用很广泛的算法,可以用来做分类、回归。在很多的数据上都有不错的效果。又称作:MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net。发明者:Friedman。Gradient Bo

2016-03-26 21:54:32 1664

转载 机器学习:多分类的logistic回归

Multi-Class Logistic(多分类的Logistic问题)它适用于那些类别数大于2的分类问题,并且在分类结果中,样本x不是一定只属于某一个类可以得到样本x分别属于多个类的概率(也可以说样本x的估计y符合某一个几何分布),这实际上是属于Generalized Linear Model中讨论的内容。考虑一个结论:如果一个分类问题符合几何分布,那么就可以用Logistic变换来进行

2016-03-26 21:41:50 18694

原创 机器学习:决策树之随机森林

个人理解:决策树的随机森林本质上是一种bagging方法,是通过组合一系列弱分类器得到强分类器的的过程。随后分4步:(1)随机采样随机多次地从原数据集中选择N个样本点作为决策树的训练样本。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个,这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本,同时

2016-03-26 21:27:11 1386

原创 机器学习:HMM隐马尔可夫模型用于中文分词

1. 定义隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。两个基...

2016-03-26 21:08:43 13253 2

原创 笔试题:数据库 (2)

1. 数据库的常见范式目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和第五范式(5NF,还又称完美范式)。在第一范式的基础上进一步满足更多规范要求的称为第二范式(2NF),其余范式以次类推。一般说来,数据库只需满足第三范式(3NF)就行了。第一范式(1NF)—— 每一列原子不可分在关系模型中,数据

2016-03-23 10:25:55 2561

转载 桌面点击:右键-显示设置,提示"该文件没有与之关联的程序来执行该操作"

解决方法1右击是我的电脑 点击管理 显示 该文件没有与之关联的文件来操作 ?????打开电脑左下角“开始”菜单,找到【运行】选项,点击打开;在弹出的运行对话框输入 regedit 命令,点击确定进入注册表编辑器界面;进入注册表界面,点击上方【编辑】选项,在弹出的菜单栏选择【查找】;进入查找选项,将左下方【全字匹配】勾选上,输入Manage然后点击【查找下一个】;注意;...

2016-03-21 20:39:48 37673 5

原创 【Python】收集python编程中碰到的坑

【最新更新】 Linux环境下的路径一定要使用斜杠“/”而不要使用反斜杠“\”。否则识别不出来。 >>> os.path.exists(r"csv2\appl")False>>> os.path.exists(r"csv2\\appl")False>>> os.path.exists(r"csv2/appl")Tru...

2016-03-21 16:06:35 4263 2

原创 机器学习:EM算法

1. 定义EM(Expectation Maximization), 期望极大算法,是一种从不完全数据或有数据丢失的数据集(存在隐含变量)中求解概率模型参数的最大似然估计方法。用户含有隐变量的的概率模型参数的极大似然估计,或称极大后验概率估计法。EM应用:高斯混合模型。EM推广:GEM算法。2. 原理《统计学习方法》一书中给出一个案例“三硬币模型”:EM算法学习(Expecta

2016-03-20 18:55:36 828

原创 机器学习:半监督学习

http://blog.csdn.net/yhdzw/article/details/22733371

2016-03-19 21:57:59 1156

原创 机器学习:线性判别分析LDA

定义:线性判别式分析(Linear discriminant analysis),又称为Fisher线性判别(Fisher linear discriminant)。原理:将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。更多见机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(

2016-03-19 21:54:26 1083

原创 机器学习:启发式算法

启发式算法(heuristic algorithm):相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。通俗的说,启发式算法是指在一个随机的群体寻优过程中,个体能够利用自身或者全局的经验来制定各

2016-03-19 20:17:46 7642

原创 深度学习:神经网络

http://tech.sina.com.cn/i/2016-02-23/doc-ifxprucu3124795.shtml

2016-03-19 10:49:29 2552

原创 机器学习:生成模型和判别模型

1 生成模型和判别模型的定义对o和s进行统计建模,通常有两种方式:(1)判别模型基本思想:有限样本条件下建立判别函数p(o|s),不考虑样本的产生模型,直接研究预测模型p(s|o),即判别模型:P(s|o)= P(o|s)P(s)/ P(o)典型判别模型:k近邻,决策树,logistic回归,支持向量机,感知机等。(1)生成模型构建o和s

2016-03-18 21:34:26 4013

原创 笔试题:计算机网络 (1)

1. 应用程序PING 发出的是什么报文()A.  TCP 请求报文B.  TCP 应答报文 C. ICMP 请求报文D. ICMP 应答报文网络报文应用层:RIP、OSIP、FTP、HTTP、SMTP(简单邮件传送协议)运输层:TCP、UDP网际层:IP、ARP(根据地址获取物理地址)、ICMP(网络控制报文协议,例如ping)网际接口层:Ethernet2.

2016-03-17 21:40:50 1911

原创 笔试题:数据库 (1)

1. 数据库正确执行的四个基本要素是什么?ACID特性:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)2.(B )保存所有的临时表和临时存储过程。A. master数据库 B. tempdb数据库C. model数据库 D. msdb数据库SQL Server 中4个系统数据库,Master、Mode

2016-03-17 21:40:29 1188

原创 笔试题:操作系统 (1)

1. 死锁的条件四个必要条件:互斥、请求与保持、非剥夺、循环等待。三个主要原因:资源不足、资源分配不当、进程推进顺序非法。两个检测图:资源分配图、进程等待图。死锁的处理四个预防方法:申新先释旧、一次请求完、按序申请。依次破坏了死锁的第2、3、4个必要条件。两个恢复方法:撤销死锁进程(撤销资源)、挂起死锁进程(剥夺资源)。一个避免方法:银行家算法。(动态避免)论述解决

2016-03-17 21:40:12 1998

原创 《剑指offer》:行列有序的二维数组查找()

------------------------------------------------------------------------------------------------------------------------题目在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断

2016-03-17 12:16:27 1272 2

原创 C++:类与对象

-----------------------------------------------------------------------------------------------------C与C++区别:C是一个结构化语言,它的重点在于算法和数据结构。C程序的设计首要考虑的是如何通过一个过程,对输入(或环境条件)进行运算处理得到输出(或实现过程(事务)控制)C++

2016-03-16 11:15:17 664

原创 C++:为什么有容器与迭代器

--------------------------------------------------------------------------个人理解:vector类似于栈,尾端插入删除。deque类似于双向栈,头尾插入与删除。list类似于双链表。迭代器类似于指针,提供访问容器的方法。---------------------------------------

2016-03-15 17:55:04 1080

原创 C++:冒号与双冒号用法

1.冒号(:)用法(1)类名冒号:定义类的继承。(2)构造函数后面的冒号:分割作用,类给成员变量赋值。初始化列表,更适用于成员变量的常量const型。struct _XXX{_XXX() : y(0xc0) {}};(3) public:和private:后面的冒号:后面定义的所有成员都是公有或私有的。直到下一个"public:”或"private:”出现为止

2016-03-15 17:31:25 2713

原创 机器学习:线性回归的基本假设

---------------------------------------------------------------------------------------------------------------关于线性回归的描述,以下正确的有:A. 基本假设包括随机干扰项是均值为0,方差为1的标准正态分布B. 基本假设包括随机干扰下是均值为0的同方差正态分布C. 在

2016-03-15 16:33:38 6017

原创 机器学习:维度灾难问题

维度灾难问题维数灾难(英语:curse of dimensionality,又名维度的詛咒),最早由理查德·贝尔曼(Richard E. Bellman)在考虑动态优化问题时首次提出来的术语,用来描述当(数学)空间维度增加时,分析和组织高维空间(通常有成百上千维),因体积指数增加而遇到各种问题场景。举例来说,100个平均分布的点能把一个单位区间以每个点距离不超过0.01采样;而当维

2016-03-15 10:10:47 5776

原创 机器学习:L1与L2正则化项

--------------------------------------------------------------------------------------------关于支持向量机SVM,下列说法错误的是()  A. L2正则项,作用是最大化分类间隔,使得分类器拥有更强的泛化能力  B. Hinge 损失函数,作用是最小化经验分类错误  C. 分类间隔为1/|

2016-03-15 10:02:43 9521 3

原创 机器学习:不均衡样本情况下的抽样

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------在分类问题中,我们经常会遇到正负样本数据量不等

2016-03-15 09:44:43 9606

原创 机器学习:时间序列模型

---------------------------------------------------------------------------------------------------------------下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测?AR模型MA模型ARMA模型GARCH模型(正确)------------------

2016-03-14 22:16:40 21983

原创 机器学习:文本挖掘之特征选择

----------------------------------------------------------------------------------------------------------------下列哪个不属于常用的文本分类的特征选择算法?卡方检验值互信息信息增益主成分分析(不属于)----------------------------

2016-03-14 21:47:18 4477

原创 机器学习:序列模式挖掘算法

------------------------------------------------------------------------------------------------------------------------题目:下面有关序列模式挖掘算法的描述,错误的是?  AprioriAll算法和GSP算法都属于Apriori类算法,都要产生大量的候选序列  F

2016-03-14 21:30:50 9401 1

原创 Linux特点与优势

1. C语言写成,编译之后就是内核。完全开放源码,用户可以定制自己的系统。2. Linux更容易改动,摸清自己需要什么,下载对应的库,看库文档。3. Linux在内存管理优势:Windows是只在需要内存时,才为应用程序分配内存;Linux 无论物理内存有多大,都将其充份利用。4. Linux可以随意切换桌面环境。5. 不需要整理磁盘碎片。微软FAT文件系统:尽可能地将文件排列

2016-03-14 19:33:44 5352

原创 思维导图:线性代数

线性代数——同济大学第四版

2016-03-12 22:10:19 9587

原创 思维导图:概率论

浙大版概率论与数理统计的思维导图,主要为了方便记忆主要内容。

2016-03-12 21:25:10 14814 6

原创 C++程序员面试宝典——预处理、counst与sizeof

---------------------------------------------基本原理----------------------------------------------------1. C++程序设计三大难点:预处理、counst与sizeof(1)预处理C++从C语言那里把C语言预处理器继承过来(C语言预处理器,被Bjarne博士简称为Cpp)。主要作用

2016-03-11 15:32:06 1145

原创 《机器学习实战》——数据降维技术

1. PCA降维2. 奇异值分解

2016-03-10 15:39:47 1200

原创 《机器学习实战》——无监督学习

基本原理:无监督学习中,要划分的类别或者目标变量事先并不存在。摆在面前的是一堆无意义的数据集,要对其进行分组。其中最重要的算法有三个:K均值算法、基于Apriori的关联分析、基于FP-growth的关联分析。1. K-means(K核算法)随机确定k个初始点作为质心;将数据集中每个点分配到一个蔟中,即为每个点找最近的簇心;选择每个簇的簇心更新为该簇所有点的平均值。优点:容

2016-03-09 22:07:55 1314 1

原创 机器学习:监督学习习题

1. SVM和logistic回归分别在什么情况下使用?(1) 两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss。这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。(2)两者的根本目的都是一样的。SVM的处理方法是只考虑support vectors,也...

2016-03-09 18:35:34 1687

空空如也

求教python高手:一个简单的问题,lstrip函数切割错误

发表于 2015-08-08 最后回复 2020-04-16

python 如何定义动态二维数组

发表于 2015-08-17 最后回复 2020-01-13

python-matplotlib画图:如何将一个数以【指数形式】展现出来

发表于 2015-12-03 最后回复 2019-03-18

CSDN将我的一篇置顶博文搞丢了

发表于 2017-10-17 最后回复 2018-09-03

博客栏目中的类别名,希望允许冒号、竖杠、中文括号的存在

发表于 2017-12-13 最后回复 2017-12-13

vector定义二维数组之后,在子容器添加元素的方法——即扩充列元素。

发表于 2016-03-16 最后回复 2016-03-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除