【PAT】A1123 Is It a Complete AVL Tree (30point(s))


Author: CHEN, Yue
Organization: 浙江大学
Time Limit: 400 ms
Memory Limit: 64 MB
Code Size Limit: 16 KB

A1123 Is It a Complete AVL Tree (30point(s))

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO

Code

#include <bits/stdc++.h>
using namespace std;
struct NODE{
    int data,num;
    struct NODE *lchild,*rchild;
};
int maxNUM=-1;
vector<int> level;
int getHeight(NODE *root){
    if(root==NULL)  return 0;
    return max(getHeight(root->lchild),getHeight(root->rchild))+1;
}

NODE *lRotate(NODE *root){
    NODE *temp=root->rchild;
    root->rchild=temp->lchild;
    temp->lchild=root;
    return temp;
}

NODE *rRotate(NODE *root){
    NODE *temp=root->lchild;
    root->lchild=temp->rchild;
    temp->rchild=root;
    return temp;
}

NODE *lrRotate(NODE *root){
    root->lchild=lRotate(root->lchild);
    return rRotate(root);
}

NODE *rlRotate(NODE *root){
    root->rchild=rRotate(root->rchild);
    return lRotate(root);
}

NODE *Insert(NODE *root,int x){
    if(root==NULL){
        root=new NODE;
        root->data=x;
        root->lchild=root->rchild=NULL;
    }
    else if(x<=root->data){
        root->lchild=Insert(root->lchild,x);
        if(getHeight(root->lchild)-getHeight(root->rchild)>=2){
            if(x<root->lchild->data)    root=rRotate(root);
            else    root=lrRotate(root);
        }
    }
    else{
        root->rchild=Insert(root->rchild,x);
        if(getHeight(root->rchild)-getHeight(root->lchild)>=2){
            if(x>root->rchild->data)    root=lRotate(root);
            else    root=rlRotate(root);
        }
    }
    return root;
}

void levelOrder(NODE *root){
    queue<NODE*> q;
    q.push(root);
    while(!q.empty()){
        NODE *temp=q.front();
        q.pop();
        if(temp->num>maxNUM){
            maxNUM=temp->num;
        }
        level.push_back(temp->data);
        if(temp->lchild!=NULL){
            q.push(temp->lchild);
            temp->lchild->num=temp->num*2;
        }
        if(temp->rchild!=NULL){
            q.push(temp->rchild);
            temp->rchild->num=temp->num*2+1;
        }
    }
}

int main(){
    int n,k;
    cin>>n;
    NODE *root=NULL;
    for(int i=0;i<n;i++){
        cin>>k;
        root=Insert(root,k);
    }
    root->num=1;
    levelOrder(root);
    for(int i=0;i<level.size();i++){
        if(i==0)    printf("%d",level[i]);
        else    printf(" %d",level[i]);
    }
    printf("\n");
    if(maxNUM==n)   printf("YES\n");
    else    printf("NO\n");
    return 0;
}

Analysis

-对一棵二叉平衡树进行逐个结点的插入操作。并输出其层序序列,以及判断其是否是完全二叉树。

《编译原理》是计算机科学中一门极为重要的课程,主要探讨如何将高级程序设计语言转换成机器可执行的指令。清华大学的张素琴教授在这一领域有着深厚的学术造诣,其编译原理课后习题答案对于学习者而言是非常珍贵的资源。这份压缩文件详细解析了课程中所涉及的概念、理论和方法的实践应用,目的是帮助学生更好地理解编译器设计的核心内容。 编译原理的核心知识点主要包括以下几点: 词法分析:作为编译过程的首要环节,词法分析器会扫描源代码,识别出一个个称为“标记”(Token)的最小语法单位。通常借助正则表达式来定义各种标记的模式。 语法分析:基于词法分析产生的标记流,语法分析器依据文法规则构建语法树。上下文无关文法(CFG)是编译器设计中常用的一种形式化工具。 语义分析:这一步骤用于理解程序的意义,确保程序符合语言的语义规则。语义分析可分为静态语义分析和动态语义分析,前者主要检查类型匹配、变量声明等内容,后者则关注运行时的行为。 中间代码生成:编译器通常会生成一种高级的中间表示,如三地址码或抽象语法树,以便于后续的优化和目标代码生成。 代码优化:通过消除冗余计算、改进数据布局等方式提升程序的执行效率,同时不改变程序的语义。 目标代码生成:根据中间代码生成特定机器架构的目标代码,这一阶段需要考虑指令集体系结构、寄存器分配、跳转优化等问题。 链接:将编译后的模块进行合并,解决外部引用,最终形成一个可执行文件。 错误处理:在词法分析、语法分析和语义分析过程中,编译器需要能够检测并报告错误,例如语法错误、类型错误等。 张素琴教授的课后习题答案覆盖了上述所有核心知识点,并可能包含实际编程练习,比如实现简单的编译器或解释器,以及针对特定问题的解题策略。通过解答这些习题,学生可以加深对编译原理的理解,提升解决问题的能力,为今后参与编译器开发或软件工程实践奠定坚实的基础。这份资源不仅是学习编译原理的有力辅助材料,也是
车辆路径问题(Vehicle Routing Problem, VRP)是物流与运输领域中的一个重要优化问题,目标是规划一组最优车辆路线,确保所有客户点都被访问,同时使总行驶距离最小化。当引入时间窗约束(Time Windows)后,问题演变为带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW),其复杂性显著增加。在VRPTW中,每个客户点都有一个特定的服务时间窗口,车辆必须在该窗口内到达,否则无法满足客户需求。 本项目“VRPTW-ga”采用遗传算法(Genetic Algorithm, GA)来解决这一问题。遗传算法是一种基于生物进化原理的全局优化方法,通过模拟自然选择、基因重组和突变等过程,逐步生成近似最优解。在Python中实现遗传算法时,首先需要确定问题的编码方式。对于VRPTW,通常采用整数编码,每条路线用一串数字表示,数字的顺序对应车辆的访问顺序。接着,需要设计适应度函数(Fitness Function),用于评估每个个体(即一组路线)的优劣,通常以总行驶距离或总服务时间作为优化目标。遗传算法的基本流程如下:1. 初始化种群,随机生成一定数量的初始个体,代表不同的车辆路线;2. 适应度评估,计算每个个体的适应度值,适应度与总行驶距离成反比;3. 选择操作,根据适应度值选择个体,常用方法包括轮盘赌选择和锦标赛选择等;4. 交叉操作,选择两个个体进行基因交叉,生成新的个体,VRPTW中可采用部分匹配交叉或顺序交叉等策略;5. 变异操作,对部分个体进行随机变异,调整其访问顺序,以维持种群多样性;6. 检查终止条件,若达到预设的迭代次数或适应度阈值,则停止算法,否则返回第2步继续执行。 在“VRPTW-ga-master”项目中,可能包含以下关键文件:problem.py用于定义车辆路径问题的具体
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值