【PAT】A1141 PAT Ranking of Institutions (25point(s))

本文详细介绍了一种用于PAT竞赛的机构排名算法,该算法基于学生表现计算总权重得分(TWS),并按TWS对机构进行排名。文章涵盖了输入规格、输出规格、样例输入与输出,以及代码实现细节,包括数据结构设计、比较函数和主要逻辑流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Author: CHEN, Yue
Organization: 浙江大学
Time Limit: 800 ms
Memory Limit: 64 MB
Code Size Limit: 16 KB

A1141 PAT Ranking of Institutions (25point(s))

After each PAT, the PAT Center will announce the ranking of institutions based on their students’ performances. Now you are asked to generate the ranklist.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤10^​5​​ ), which is the number of testees. Then N lines follow, each gives the information of a testee in the following format:

ID Score School

where ID is a string of 6 characters with the first one representing the test level: B stands for the basic level, A the advanced level and T the top level; Score is an integer in [0, 100]; and School is the institution code which is a string of no more than 6 English letters (case insensitive). Note: it is guaranteed that ID is unique for each testee.

Output Specification:

For each case, first print in a line the total number of institutions. Then output the ranklist of institutions in nondecreasing order of their ranks in the following format:

Rank School TWS Ns

where Rank is the rank (start from 1) of the institution; School is the institution code (all in lower case); ; TWS is the total weighted score which is defined to be the integer part of ScoreB/1.5 + ScoreA + ScoreT*1.5, where ScoreX is the total score of the testees belong to this institution on level X; and Ns is the total number of testees who belong to this institution.

The institutions are ranked according to their TWS. If there is a tie, the institutions are supposed to have the same rank, and they shall be printed in ascending order of Ns. If there is still a tie, they shall be printed in alphabetical order of their codes.

Sample Input:

10
A57908 85 Au
B57908 54 LanX
A37487 60 au
T28374 67 CMU
T32486 24 hypu
A66734 92 cmu
B76378 71 AU
A47780 45 lanx
A72809 100 pku
A03274 45 hypu

Sample Output:

5
1 cmu 192 2
1 au 192 3
3 pku 100 1
4 hypu 81 2
4 lanx 81 2

Code

#include <stdio.h>
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <unordered_map>
using namespace std;
struct NODE{
    int cnt,tws;
    string name;
};
unordered_map<string,int> stuCnt;
unordered_map<string,double> tws;
vector<NODE> school;
bool cmp(NODE a, NODE b){
    if(a.tws!=b.tws)  return a.tws>b.tws;
    else if(a.cnt!=b.cnt)   return a.cnt<b.cnt;
    else    return a.name<b.name;
}
int main(){
    int n,ranks=1,same=1;
    double b;
    string a,c;
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>a>>b>>c;
        for(int j=0;j<c.size();j++){
            if(c[j]>='A'&&c[j]<='Z')
                c[j]=c[j]+32;
        }
        if(a[0]=='A')   tws[c]+=b;
        else if(a[0]=='B')  tws[c]+=b/1.5;
        else    tws[c]+=b*1.5;
        stuCnt[c]++;
    }
    for(unordered_map<string,int>::iterator it=stuCnt.begin();it!=stuCnt.end();it++){
        NODE temp;
        temp.name=it->first;
        temp.cnt=stuCnt[it->first];
        temp.tws=(int)tws[it->first];
        school.push_back(temp);
    }
    sort(school.begin(),school.end(),cmp);
    printf("%d\n",school.size());
    for(int i=0;i<school.size();i++){
        if(i!=0&&(school[i].tws!=school[i-1].tws))  ranks=i+1;
        printf("%d %s %d %d\n",ranks,school[i].name.c_str(),school[i].tws,school[i].cnt);
    }
    return 0;
}

Analysis

-已知每个学生的id、分数、学校名。

-输出学校总数,并且根据学校的TWS(加权平均TWS=ScoreB/1.5 + ScoreA + ScoreT*1.5,T、A、B分别表示考顶甲乙的成绩)增序输出。输出内容为:学校排名、学校名称、TWS、学校参赛人数。

-注意:学校名称不区分大小写,且输出时候以小写方式输出。不同学校有相同的TWS时按照参赛学生人数增序排列,如果还有相同,则按照学校名字母增序排列。

《编译原理》是计算机科学中一门极为重要的课程,主要探讨如何将高级程序设计语言转换成机器可执行的指令。清华大学的张素琴教授在这一领域有着深厚的学术造诣,其编译原理课后习题答案对于学习者而言是非常珍贵的资源。这份压缩文件详细解析了课程中所涉及的概念、理论和方法的实践应用,目的是帮助学生更好地理解编译器设计的核心内容。 编译原理的核心知识点主要包括以下几点: 词法分析:作为编译过程的首要环节,词法分析器会扫描源代码,识别出一个个称为“标记”(Token)的最小语法单位。通常借助正则表达式来定义各种标记的模式。 语法分析:基于词法分析产生的标记流,语法分析器依据文法规则构建语法树。上下文无关文法(CFG)是编译器设计中常用的一种形式化工具。 语义分析:这一步骤用于理解程序的意义,确保程序符合语言的语义规则。语义分析可分为静态语义分析和动态语义分析,前者主要检查类型匹配、变量声明等内容,后者则关注运行时的行为。 中间代码生成:编译器通常会生成一种高级的中间表示,如三地址码或抽象语法树,以便于后续的优化和目标代码生成。 代码优化:通过消除冗余计算、改进数据布局等方式提升程序的执行效率,同时不改变程序的语义。 目标代码生成:根据中间代码生成特定机器架构的目标代码,这一阶段需要考虑指令集体系结构、寄存器分配、跳转优化等问题。 链接:将编译后的模块进行合并,解决外部引用,最终形成一个可执行文件。 错误处理:在词法分析、语法分析和语义分析过程中,编译器需要能够检测并报告错误,例如语法错误、类型错误等。 张素琴教授的课后习题答案覆盖了上述所有核心知识点,并可能包含实际编程练习,比如实现简单的编译器或解释器,以及针对特定问题的解题策略。通过解答这些习题,学生可以加深对编译原理的理解,提升解决问题的能力,为今后参与编译器开发或软件工程实践奠定坚实的基础。这份资源不仅是学习编译原理的有力辅助材料,也是
车辆路径问题(Vehicle Routing Problem, VRP)是物流与运输领域中的一个重要优化问题,目标是规划一组最优车辆路线,确保所有客户点都被访问,同时使总行驶距离最小化。当引入时间窗约束(Time Windows)后,问题演变为带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW),其复杂性显著增加。在VRPTW中,每个客户点都有一个特定的服务时间窗口,车辆必须在该窗口内到达,否则无法满足客户需求。 本项目“VRPTW-ga”采用遗传算法(Genetic Algorithm, GA)来解决这一问题。遗传算法是一种基于生物进化原理的全局优化方法,通过模拟自然选择、基因重组和突变等过程,逐步生成近似最优解。在Python中实现遗传算法时,首先需要确定问题的编码方式。对于VRPTW,通常采用整数编码,每条路线用一串数字表示,数字的顺序对应车辆的访问顺序。接着,需要设计适应度函数(Fitness Function),用于评估每个个体(即一组路线)的优劣,通常以总行驶距离或总服务时间作为优化目标。遗传算法的基本流程如下:1. 初始化种群,随机生成一定数量的初始个体,代表不同的车辆路线;2. 适应度评估,计算每个个体的适应度值,适应度与总行驶距离成反比;3. 选择操作,根据适应度值选择个体,常用方法包括轮盘赌选择和锦标赛选择等;4. 交叉操作,选择两个个体进行基因交叉,生成新的个体,VRPTW中可采用部分匹配交叉或顺序交叉等策略;5. 变异操作,对部分个体进行随机变异,调整其访问顺序,以维持种群多样性;6. 检查终止条件,若达到预设的迭代次数或适应度阈值,则停止算法,否则返回第2步继续执行。 在“VRPTW-ga-master”项目中,可能包含以下关键文件:problem.py用于定义车辆路径问题的具体
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值