【PAT】A1076 Forwards on Weibo (30point(s))


Author: CHEN, Yue
Organization: 浙江大学
Time Limit: 3000 ms
Memory Limit: 64 MB
Code Size Limit: 16 KB

A1076 Forwards on Weibo (30point(s))

Weibo is known as the Chinese version of Twitter. One user on Weibo may have many followers, and may follow many other users as well. Hence a social network is formed with followers relations. When a user makes a post on Weibo, all his/her followers can view and forward his/her post, which can then be forwarded again by their followers. Now given a social network, you are supposed to calculate the maximum potential amount of forwards for any specific user, assuming that only L levels of indirect followers are counted.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers: N (≤1000), the number of users; and L (≤6), the number of levels of indirect followers that are counted. Hence it is assumed that all the users are numbered from 1 to N. Then N lines follow, each in the format:

M[i] user_list[i]

where M[i] (≤100) is the total number of people that user[i] follows; and user_list[i] is a list of the M[i] users that followed by user[i]. It is guaranteed that no one can follow oneself. All the numbers are separated by a space.

Then finally a positive K is given, followed by K UserID’s for query.

Output Specification:

For each UserID, you are supposed to print in one line the maximum potential amount of forwards this user can trigger, assuming that everyone who can view the initial post will forward it once, and that only L levels of indirect followers are counted.

Sample Input:

7 3
3 2 3 4
0
2 5 6
2 3 1
2 3 4
1 4
1 5
2 2 6

Sample Output:

4
5

Code

#include <bits/stdc++.h>
using namespace std;
vector<int> followed[1010];
int visit[1010];
struct node{
    int id,layer;
};
int BFS(node root,int l){
    memset(visit,0,sizeof(visit));
    visit[root.id]=1;
    queue<node> q;
    q.push(root);
    int cnt=0;
    while(!q.empty()){
        node temp=q.front();
        q.pop();
        for(int i=0;i<followed[temp.id].size();i++){
            if(visit[followed[temp.id][i]]==0 && temp.layer<l){
                q.push({followed[temp.id][i],temp.layer+1});
                visit[followed[temp.id][i]]=1;
                cnt++;
            }
        }
    }
    return cnt;
}
int main(){
    int n,l,m,k,temp;
    cin>>n>>l;
    for(int i=1;i<=n;i++){
        cin>>m;
        for(int j=0;j<m;j++){
            cin>>temp;
            followed[temp].push_back(i);
        }
    }
    cin>>k;
    while(k--){
        cin>>temp;
        printf("%d\n",BFS({temp,0},l));
    }
    return 0;
}

Analysis

-已知一些关注关系

-给出一个人,求其三级关注中的总人数。其实就是求有向图中,从一点出发,向外扩3层所新加入的结点数。

《编译原理》是计算机科学中一门极为重要的课程,主要探讨如何将高级程序设计语言转换成机器可执行的指令。清华大学的张素琴教授在这一领域有着深厚的学术造诣,其编译原理课后习题答案对于学习者而言是非常珍贵的资源。这份压缩文件详细解析了课程中所涉及的概念、理论和方法的实践应用,目的是帮助学生更好地理解编译器设计的核心内容。 编译原理的核心知识点主要包括以下几点: 词法分析:作为编译过程的首要环节,词法分析器会扫描源代码,识别出一个个称为“标记”(Token)的最小语法单位。通常借助正则表达式来定义各种标记的模式。 语法分析:基于词法分析产生的标记流,语法分析器依据文法规则构建语法树。上下文无关文法(CFG)是编译器设计中常用的一种形式化工具。 语义分析:这一步骤用于理解程序的意义,确保程序符合语言的语义规则。语义分析可分为静态语义分析和动态语义分析,前者主要检查类型匹配、变量声明等内容,后者则关注运行时的行为。 中间代码生成:编译器通常会生成一种高级的中间表示,如三地址码或抽象语法树,以便于后续的优化和目标代码生成。 代码优化:通过消除冗余计算、改进数据布局等方式提升程序的执行效率,同时不改变程序的语义。 目标代码生成:根据中间代码生成特定机器架构的目标代码,这一阶段需要考虑指令集体系结构、寄存器分配、跳转优化等问题。 链接:将编译后的模块进行合并,解决外部引用,最终形成一个可执行文件。 错误处理:在词法分析、语法分析和语义分析过程中,编译器需要能够检测并报告错误,例如语法错误、类型错误等。 张素琴教授的课后习题答案覆盖了上述所有核心知识点,并可能包含实际编程练习,比如实现简单的编译器或解释器,以及针对特定问题的解题策略。通过解答这些习题,学生可以加深对编译原理的理解,提升解决问题的能力,为今后参与编译器开发或软件工程实践奠定坚实的基础。这份资源不仅是学习编译原理的有力辅助材料,也是
车辆路径问题(Vehicle Routing Problem, VRP)是物流与运输领域中的一个重要优化问题,目标是规划一组最优车辆路线,确保所有客户点都被访问,同时使总行驶距离最小化。当引入时间窗约束(Time Windows)后,问题演变为带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW),其复杂性显著增加。在VRPTW中,每个客户点都有一个特定的服务时间窗口,车辆必须在该窗口内到达,否则无法满足客户需求。 本项目“VRPTW-ga”采用遗传算法(Genetic Algorithm, GA)来解决这一问题。遗传算法是一种基于生物进化原理的全局优化方法,通过模拟自然选择、基因重组和突变等过程,逐步生成近似最优解。在Python中实现遗传算法时,首先需要确定问题的编码方式。对于VRPTW,通常采用整数编码,每条路线用一串数字表示,数字的顺序对应车辆的访问顺序。接着,需要设计适应度函数(Fitness Function),用于评估每个个体(即一组路线)的优劣,通常以总行驶距离或总服务时间作为优化目标。遗传算法的基本流程如下:1. 初始化种群,随机生成一定数量的初始个体,代表不同的车辆路线;2. 适应度评估,计算每个个体的适应度值,适应度与总行驶距离成反比;3. 选择操作,根据适应度值选择个体,常用方法包括轮盘赌选择和锦标赛选择等;4. 交叉操作,选择两个个体进行基因交叉,生成新的个体,VRPTW中可采用部分匹配交叉或顺序交叉等策略;5. 变异操作,对部分个体进行随机变异,调整其访问顺序,以维持种群多样性;6. 检查终止条件,若达到预设的迭代次数或适应度阈值,则停止算法,否则返回第2步继续执行。 在“VRPTW-ga-master”项目中,可能包含以下关键文件:problem.py用于定义车辆路径问题的具体
### CSS `animation-fill-mode` 属性中的 `forwards` 值 当定义动画时,`animation-fill-mode` 属性指定了目标元素在动画执行之前或之后应用哪些样式。对于 `forwards` 值而言,在动画完成后,被动画影响的属性会保留其最后的关键帧值(而不是恢复到初始状态)。这意味着即使动画结束,最终的状态仍然会被保持。 #### 使用示例 下面是一个简单的例子来展示如何使用带有 `forwards` 的 `animation-fill-mode`: ```css /* 定义关键帧 */ @keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } } /* 应用动画并设置 fill mode */ .fade-in-element { animation-name: fadeIn; animation-duration: 2s; animation-fill-mode: forwards; } ``` 在这个案例里,`.fade-in-element` 类下的 HTML 元素将会逐渐变得不透明,并且一旦动画完成,这些元素将继续维持完全可见的状态,而不会返回原来的不可见形式[^1]。 #### 实际应用场景 考虑一个按钮点击后显示提示框的情况。可以利用 `forwards` 来确保提示框在关闭前一直保持最新的视觉效果直到手动隐藏它为止。 ```html <button id="show-toast">Show Toast</button> <div class="toast hidden"></div> <style> .hidden { display:none;} .toast { /* 初始状态下隐藏 toast */ visibility:hidden; @keyframes slideInDown { from { transform: translateY(-100%); } to { transform: translateY(0); } } animation-name:slideInDown ; animation-duration:.5s; animation-fill-mode:forwards; /* 动画结束后不再隐藏 */ visibility:visible !important; } </style> <script> document.getElementById('show-toast').addEventListener('click', function() { document.querySelector('.toast').classList.remove('hidden'); }); </script> ``` 这段代码展示了通过移除 `.hidden` 类使提示框显现出来的同时启动下滑进入屏幕中心位置的效果;由于设置了 `forwards`, 提示框将在动画结束后停留在屏幕上直至进一步操作将其再次隐藏.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值