文章目录
Author: 陈越
Organization: 浙江大学
Time Limit: 900 ms
Memory Limit: 64 MB
Code Size Limit: 16 KB
A1154 Vertex Coloring (25point(s))
A proper vertex coloring is a labeling of the graph’s vertices with colors such that no two vertices sharing the same edge have the same color. A coloring using at most k colors is called a (proper) k-coloring.
Now you are supposed to tell if a given coloring is a proper k-coloring.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 10^4 ), being the total numbers of vertices and edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of colorings you are supposed to check. Then K lines follow, each contains N colors which are represented by non-negative integers in the range of int. The i-th color is the color of the i-th vertex.
Output Specification:
For each coloring, print in a line k-coloring if it is a proper k-coloring for some positive k, or No if not.
Sample Input:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
4
0 1 0 1 4 1 0 1 3 0
0 1 0 1 4 1 0 1 0 0
8 1 0 1 4 1 0 5 3 0
1 2 3 4 5 6 7 8 8 9
Sample Output:
4-coloring
No
6-coloring
No
Code
#include <iostream>
#include <stdio.h>
#include <vector>
#include <string.h>
#include <queue>
#include <unordered_set>
using namespace std;
vector<int> near[10000];
int vis[10000];
int color[10000];
bool BFS(int root){ // 判断两相邻结点的颜色是否相同
queue<int> q;
q.push(root);
vis[root]=1;
while(!q.empty()){
int temp=q.front();
q.pop();
for(int i=0;i<near[temp].size();i++){
if(vis[near[temp][i] ]==0){
vis[near[temp][i] ]=1;
q.push(near[temp][i]);
}
if(color[temp]==color[near[temp][i] ]) // 如果相同返回false
return false;
}
}
return true; // 如果都不相同返回true
}
int main(){
int n,m,u,v;
cin>>n>>m;
for(int i=0;i<m;i++){
cin>>u>>v;
near[u].push_back(v);
near[v].push_back(u);
}
int k;
cin>>k;
for(int i=0;i<k;i++){
unordered_set<int> us; // us的大小即使用的颜色数
memset(color,-1,sizeof(color));
memset(vis,0,sizeof(vis));
for(int j=0;j<n;j++){
cin>>u;
us.insert(u);
color[j]=u;
}
if(BFS(0)) printf("%d-coloring\n",us.size());
else printf("No\n");
}
return 0;
}
Analysis
-已知一个图各结点间的连通关系。以及k个上色方案。
-求给出的上色方案能否让图中两相邻结点的颜色(颜色用编号表示)不同。如果可以,输出 k-coloring ,其中k表示使用了k种颜色。如果不可以,输出 No 。

被折叠的 条评论
为什么被折叠?



