ZCC的专栏

每天坚持看书和写作,相信每天的一小步,将会是人生的一大步! 形成、知化、流动、屏读、使用、共享、过滤、重混、互动、追踪、提问、开始!...

大O符号/大Ω符号/大Θ符号/小o符号/小w符号等各种算法复杂度记法含义

大O符号英语Big O notation)是用于描述函数渐近行为数学符号。更确切地说,


它是用另一个(通常更简单的)函数来描述一个函数数量级渐近上界


大Ω符号的定义与大O符号的定义类似,但主要区别是,大O符号表示函数在增长到一定


度时总小于一个特定函数的常数倍,大Ω符号则表示总大于,来描述一个函数数量级


渐近下界


Θ符号大O符号大Ω符号的结合。下面给出具体的数学定义:


函数f ( n )代表某一算法在输入大小为n的情况下的工作量(效率),则在n趋向很大的时候,我们将f (n)与另一行为已知的函数g(n)进行比较:

1)如果0,则称f (n)在数量级上严格小于g(n),记为f (n)=o( g(n))。

2)如果,则称f (n)在数量级上严格大于g(n),记为f (n)=w( g(n))。

3)如果c,这里c为非0常数,则称f (n)在数量级上等于g(n),即f (n)和g(n)是同一个数量级的函数,记为:f (n)=Θ( g(n))。

4)如果f (n)在数量级上小于或等于g(n),则记为f (n)=O( g(n))。

5)如果f(n)在数量级上大于或等于g(n),则记为f (n)=Ω( g(n))。

阅读更多
个人分类: 算法导论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭