hadoop简介


hadoop

作者:
Doug Cutting


---------------------------版本
Apache

    官方版本(1.1.2)  现在到了2.5

Cloudera

  使用下载最多的版本,稳定,有商业支持,在Apache的基础上打上了一些patch。推荐使用。

Yahoo

   Yahoo内部使用的版本,发布过两次,已有的版本都放到了Apache上,后续不在继续发布,而是集中在Apache的版本上。

----------------------核心

HDFS: Hadoop Distributed File System 分布式文件系统
MapReduce :并行计算框架


--------------------hdfs架构

主从结构
主节点,只有一个 : namenode
从节点,有很多个 : datanodes

namenode负责:
接收用户操作请求
维护文件系统的目录结构


管理文件与block之间关系,block与datanode之间关系


是整个文件系统的管理节点。它维护着整个文件系统的文件目录树,文件/目录的元信息和每个文件对应的数据块列表。接收用户的操作请求。

(见源码)

文件包括:
fsimage:元数据镜像文件。存储某一时段NameNode内存元数据信息。
edits:操作日志文件。
fstime:保存最近一次checkpoint的时间
以上这些文件是保存在linux的文件系统中。

SecondaryNameNode
HA 的一个解决方案。但不支持热备。配置即可。

(见源码)

执行过程:从 NameNode 上下载元数据信息( fsimage,edits ),然后把二者合并,生成新的 fsimage ,在本地保存,并将其推送到 NameNode ,同时重置 NameNode edits.
默认在安装在 NameNode 节点上,但这样 ... 不安全!



datanode负责:
存储文件
文件被分成block存储在磁盘上
为保证数据安全,文件会有多个副本

提供真实文件数据的存储服务。

(见源码)

文件块(block): 最基本的存储单位。 对于文件内容而言,一个文件的长度大小是size,那么从文件的0偏移开始,按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block。 HDFS默认Block大小是64MB, 以一个256MB文件,共有256/64=4个Block.
不同于普通文件系统的是,HDFS中,如果一个文件小于一个数据块的大小,并不占用整个数据块存储空间
Replicat ion。多复本。默认是三个。




-------------------mapReduce架构

主从结构
主节点,只有一个 : JobTracker
从节点,有很多个 : TaskTrackers

JobTracker
负责:
接收客户提交的计算任务
把计算任务分给 TaskTrackers 执行
监控 TaskTracker 的执行情况

TaskTrackers
负责:
执行 JobTracker 分配的计算任务


----------hadoop特点

l 扩容能力( Scalable ):能可靠地( reliably )存储和处理千兆字节( PB )数据。
l 成本低( Economical ):可以通过普通机器组成的服务器群来分发以及处理数据。这些服务器群总计可达数千个节点。
l 高效率( Efficient ):通过分发数据, hadoop 可以在数据所在的节点上并行地( parallel )处理它们,这使得处理非常的快速。
l 可靠性( Reliable ): hadoop 能自动地维护数据的多份副本,并且在任务失败后能自动地重新部署( redeploy )计算任务。






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值