茅庐

Engineering is trade-off.

创业公司做数据分析(六)数据仓库的建设

本文重点探讨了数据处理层中数据仓库的建设,旨在构建一个适于分析的数据存储系统。文章探讨了数据仓库建设中的两个重要环节:数据建模与ETL过程,根据实践谈了谈维度建模的方法,以及ETL中的增量更新机制与基于Airflow的任务流管理系统。

2017-02-02 19:36:58

阅读数:11131

评论数:6

创业公司做数据分析(五)微信分享追踪系统

本文重点探讨数据采集层中的微信分享追踪系统。用户在微信中对Web H5网页进行浏览、分享,便会形成两种数据:操作行为数据和用户之间的传播关系数据,微信分享追踪系统便是对这类数据进行采集、存储,本文主要总结我们在微信分享追踪上的技术思考和方案演进。

2017-01-12 21:13:27

阅读数:9077

评论数:2

创业公司做数据分析(四)ELK日志系统

本文将重点探讨数据采集层中的ELK日志系统,结合自身实践来介绍如何使用ELK系统、使用中的问题以及如何解决。ELK是一套开源的集中式日志数据管理的解决方案,由Elasticsearch、Logstash和Kibana三个系统组成。

2017-01-07 00:54:07

阅读数:10486

评论数:3

创业公司做数据分析(三)用户行为数据采集系统

本文将重点探讨数据采集层中的用户行为数据采集系统,分析了为什么要建设用户行为数据采集系统、采什么、前端怎么采、后端怎么存。

2016-12-27 17:12:46

阅读数:13744

评论数:6

创业公司做数据分析(二)运营数据系统

本文探讨数据应用层中的运营数据系统,因为运营数据几乎是所有互联网创业公司开始做数据的起点,也是早期数据服务的主要对象。本文将着重回顾下我们做了哪些工作、遇到过哪些问题、如何解决并实现了相应的功能。

2016-12-07 22:39:07

阅读数:7935

评论数:2

创业公司做数据分析(一)开篇

        了解“认知心理学”的朋友应该知道:人类对事物的认知,总是由浅入深。然而,每个人思考的深度千差万别,关键在于思考的方式。通过提问三部曲:WHAT->HOW->WHY,可以帮助我们一步步地从事物的表象深入到事物的本质。比如学习一个新的技术框...

2016-12-01 23:14:06

阅读数:6876

评论数:2

聚合查询越来越慢?——详解Elasticsearch的Global Ordinals与High Cardinality

本文结合笔者在实践过程中遇到的由High Cardinality引起Global Ordinals构建过慢,从而导致聚合查询变慢的问题,阐述了Elasticsearch中两个核心概念:Global Ordinals和High Cardinality。

2018-10-22 17:42:37

阅读数:1769

评论数:4

打造私人搜书系统之系统设计

作者利用业余时间打造了一个自己的搜书系统,基本的思路是:从各个小说网站爬取相关的书籍信息,通过一个手机客户端来阅读小说。本文将从系统设计的角度,来谈谈设计的思路和踩过的坑。

2017-08-26 19:11:11

阅读数:3562

评论数:1

基于pandas.merge解决异源数据融合的问题

本文首先提出一个数据分析中经常遇到的异源数据融合的问题,然后介绍了解决该问题的pandas.merge的方法。

2016-11-15 17:58:08

阅读数:3265

评论数:0

循环查询数据的性能问题及优化

本文过三个实例来阐述循环查询对性能的影响和优化的方法,涉及常用的三种数据存储:MySQL,MongoDB和Redis,更重要的是想借此传达一个观点:编程,应该设计先于写代码。

2016-11-13 22:36:19

阅读数:5902

评论数:0

提示
确定要删除当前文章?
取消 删除