NIPS 2106 优秀论文和代码下载地址集锦--持续更新

本文整理了NIPS 2016上关于深度学习和强化学习的优秀论文,并提供了相应的代码仓库链接,包括R-FCN目标检测、Phased LSTM、生成对抗网络等前沿研究。
摘要由CSDN通过智能技术生成
    更新1
    各种深度学习模型介绍  :
   
    http://blog.paralleldots.com/technology/deep-learning/must-read-path-breaking-papers-about-image-classification/

  1. Using Fast Weights to Attend to the Recent Past (https://arxiv.org/abs/1610.06258)

    Repohttps://github.com/ajarai/fast-weights

  2. Learning to learn by gradient descent by gradient descent (https://arxiv.org/abs/1606.04474)

    Repohttps://github.com/deepmind/learning-to-learn

  3. R-FCN: Object Detection via Region-based Fully Convolutional Networks (https://arxiv.org/abs/1605.06409)

    Repohttps://github.com/Orpine/py-R-FCN

  4. Fast and Provably Good Seedings for k-Means (https://las.inf.ethz.ch/files/bachem16fast.pdf).

    Repohttps://github.com/obachem/kmc2

  5. How to Train a GAN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值