- 博客(141)
- 资源 (4)
- 问答 (1)
- 收藏
- 关注
翻译 带你玩-Object Tracking using OpenCV (二)
目标跟踪算法在本节中,我们将挖掘一些不同的跟踪算法。我们的目标不是对每一个跟踪器有深刻的理论理解,而是从实践的角度来理解它们。让我们首先先解释一下跟踪的一些基本原理。在跟踪中,我们的目标是在当前帧中找到一个对象,此对象已经在所有(或几乎所有)先前帧中成功被跟踪到了。由于我们已经跟踪对象直到当前帧,我们知道它是如何移动的。 换句话说,我们知道运动模型的参数。 运动模型指你知道的对象在之前
2017-02-25 18:33:30
3128
1
翻译 带你玩-Object Tracking using OpenCV (一)
今天周六,我要做一个上进的妈妈,所以学习了这篇深度好文,开始翻译~~~先把英文原版放出来,英文好的可以自行阅读 http://www.learnopencv.com/object-tracking-using-opencv-cpp-python/?winzoom=1在本教程中,给大家介绍基于opencv3.0的目标跟踪的API, 我们将学习如何以及何时使用OpenCV 3.
2017-02-25 17:48:34
11941
3
原创 ensemble learning(集成学习)笔记
ensemble learning概念通过构建并结合多个学习分类器来完成学习任务.通常认为将多个分类器结合的学习,比单一分类器的学习要准确的多.要想得到好的集成分类器,一个是基分类器要有一定的准确性,至少不能随机扔硬币猜正反还离谱;其次要有多样性,也就是分类器间有差异性存在,这样才能保证泛化能力不至于太差.ensemble learning的分类依据基分类器的生成方式,
2017-02-22 17:51:09
1582
原创 继续喷TLD
视频目标跟踪来说,常用的方法有两种:一是使用根据物体在上一帧的位置预测它在下一帧的位置,即基于运动估计的视频跟踪,常见的有kalman滤波跟踪,UKF以及一次改进的一些列算法;还有基于特征点匹配的跟踪,通过特征点的匹配来预测下一帧目标的位置,最典型的就是光流法.这些个跟踪算法会积累误差,缺乏记忆功能,一旦物体在图像中消失,跟踪就会永久失效,即使物体再出现也无法完成追踪;另一种方法是使用检测
2017-02-21 15:19:51
1301
1
转载 深度学习为何要“deep”下
深层学习开启了人工智能的新时代。不论任何行业都害怕错过这一时代浪潮,因而大批资金和人才争相涌入。但深层学习却以“黑箱”而闻名,不仅调参难,训练难,“新型”网络结构的论文又如雨后春笋般地涌现,使得对所有结构的掌握变成了不现实。我们缺少一个对深层学习合理的认识。神经网络并不缺少新结构,但缺少一个该领域的E=mc2很多人在做神经网络的实验时会发现调节某些方式和结构会产生意想不到的结果。但
2017-02-09 17:41:25
2490
转载 深层学习为何要“Deep”(上)
2016年11月22日更新:深层神经网络为什么要deep(下)增加结合Tensorflow playground的5种空间操作和物质组成视角的理解。深层学习开启了人工智能的新时代。不论任何行业都害怕错过这一时代浪潮,因而大批资金和人才争相涌入。但深层学习却以“黑箱”而闻名,不仅调参难,训练难,“新型”网络结构的论文又如雨后春笋般地涌现,使得对所有结构的掌握变成了不现实。我们缺少一个对深
2017-02-09 17:37:26
487
原创 机器学习笔记-多分类学习,类别不平衡,决策树
读书笔记多分类学习基本思想:拆解法;将多分类任务拆解为若干个二分类任务求解,先对这些问题经拆分,为拆分出的每个二分类任务训练一个分类器,测试时,对这些分类器的预测结果进行集成以获得最终的多分类结果,拆分策略:one vs one,一对一,将N个类别两两配对,产生,即N(N-1)/2个分类结果,最终结果通过投票产生,投票是把被预测的最多的类别作为最终分类结果。 One
2017-02-06 11:12:07
12141
转载 基础算法之模型组合(Model Combining)之Boosting与Gradient Boosting
终于有时间在工作之余提升一下自己了,回顾一下学生时期的课程,深深的感觉到温故而知新的妙处~~巴拉到的好文,码住~~本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 本来上一章的结尾提到,准备写
2016-12-29 14:58:03
694
原创 良心企业开发的安卓内存泄露检测工具-LeakCanary很好用
雷锋翻译的版本:https://www.liaohuqiu.net/cn/posts/leak-canary-read-me/英文版全面版本LeakCanaryAndroid 和 Java 内存泄露检测。“A small leak will sink a great ship.” - Benjamin Franklin千里之堤, 毁于蚁穴。 -- 《韩非
2016-11-01 16:09:45
358
转载 Android Studio系列教程--Gradle命令详解与导入第三方包
Android Studio + Gradle的组合用起来非常方便,很多第三方开源项目也早都迁移到了Studio,为此今天就来介绍下查看、编译并导入第三方开源项目的方法。Sublime + Terminal编译并查看源码首先来给大家介绍一种简便并且个人最喜欢的一种办法。很多时候我们在GitHub上看到一个不错的开源项目,一般有两种需求,阅读源码和查看运行效果,如果是单纯的查看源码我更喜欢用
2016-11-01 15:55:57
316
转载 Android Studio系列教程--Gradle基础
http://stormzhang.com/devtools/2014/12/18/android-studio-tutorial4/什么是Gradle?Gradle是一种依赖管理工具,基于Groovy语言,面向Java应用为主,它抛弃了基于XML的各种繁琐配置,取而代之的是一种基于Groovy的内部领域特定(DSL)语言。安装Gradle在Android Studio系列
2016-11-01 15:35:44
245
转载 Android Studio系列教程-快捷键
对于很多Eclipse转过来的同学,不适应的最主要就是快捷键部分了,Studio默认的快捷键和Eclipse差别很大,但是Studio强大的地方在于通过设置你可以一直沿用Eclipse风格的快捷键,这样对于那些Eclipse过渡来的同学省了很多学习成本。Preferences -> Keymap 然后就可以选择你想要的快捷键,这里不止可以选择Eclipse,还可以选择Emacs、Net B
2016-11-01 15:22:57
291
转载 Android Studio系列教程--基本设置与运行
http://stormzhang.com/devtools/2014/11/28/android-studio-tutorial2/今天就带大家预览下Stduio的界面与基本功能。项目结构当我们新建一个项目的目录结构默认是这样的可以看到和Eclipse的目录结构有很大区别,Studio一个窗口只能有一个项目,而Eclipse则可以同时存在很多项目,如果你看着不习惯可以点击
2016-11-01 14:48:41
458
转载 inatalling bazel
参考Installing Bazelhttp://blog.csdn.net/sunflower_Yolanda/article/details/51635674Bazel是一个编译软件。sudo add-apt-repository ppa:webupd8team/javasudo apt-get updatesudo apt-get install oracle-java8
2016-10-17 17:20:24
1210
原创 CMT跟踪算法代码分析笔记
代码主要在CMT这个类里面,主要包含initialize和processFrame两个函数实现,跟论文契合的非常好,每一个成员时干啥的,我都注释在旁边了namespace cmt{class CMT{public: CMT() : str_detector("FAST"), str_descriptor("BRISK") {} //默认的特征检测和描述子 vo
2016-05-19 18:09:13
3323
2
转载 AR与VR初探
增强现实与虚拟现实的区别 主要介绍了AR(增强现实)和VR(虚拟现实)在场景、技术、装备等方面的区别。1:AR与VR的技术区别 AR和VR的区别差不多就是computer vision和graphics的区别。 Augmented Reality,是在真实场景上进行理解,虚拟场景只是对真实场景的补充,或者方便交互,增加用户对现实世界感知
2016-05-17 16:45:14
4432
转载 TLD2.0简介
http://www.cvrobot.net/introduction-of-tracking-learning-detecition-version2-0/Zdenek Kalal 基于其开发的TLD技术,建立了TLD Vision公司。网站 http://www.tldvision.com。 TLD Vision是一家研究性公司,致力于在视频中进行运动目标的跟踪。
2016-05-17 11:35:29
1920
1
转载 CART, Bagging, Random Forest, Boosting
转自 http://blog.csdn.net/abcjennifer/article/details/8164315和 http://blog.csdn.net/tianguokaka/article/details/9018933部分摘自其他博客,详见参考文献。1.CART(Classification And Regression Tree) 思想:
2016-05-16 14:46:51
986
原创 人脸检测之Joint Cascade Face Detection and Alignment 笔记---ECCV2014
人脸检测(detection)在opencv中早就有直接能拿来用的haar分类器,基于Viola-Jones算法。但是毕竟是老掉牙的技术,Precision/Recall曲线渣到不行,在实际工程中根本没法给boss看,作为MSRA脑残粉,这里介绍一种MSRA在14年的最新技术:下点击打开链接载。这篇文章直接在30ms的时间里把detection和alignment都给做了,PR曲线彪到很高,时
2016-05-13 14:12:09
5325
1
转载 QR分解到PCA,再到人脸识别
来自:http://johnhany.net/2016/05/from-qr-decomposition-to-pca-to-face-recognition/?utm_source=tuicool&utm_medium=referralPCA(Principal Component Analysis,主成分分析)是一种很常用的根据变量协方差对数据进行降维、压缩的方法。它的精髓在于尽量用最
2016-05-11 17:50:39
2282
原创 深度学习笔记二
再发展九十年代末, 神经网络研究遇到的困境,除了慢,还是慢.抛开计算速度的因素,传统神经网络的反向传播算法,捉虫时极为困难,一个根本的问题叫做所谓 vanishing gradient problem (梯度消失问题).这个问题在1991年, 被德国学者 Sepp Hochreiter第一次清晰提出和阐明原因.简单的说, 就是成本函数 (cost function)从输出层反向传播
2016-05-11 17:36:47
484
原创 深度学习笔记一
人工智能研究的方向之一, 是以所谓 “专家系统” 为代表的, 用大量 “如果-就” (If – Then) 规则定义的, 自上而下的思路.人工神经网络 ( Artifical Neural Network),标志着另外一种,自下而上的思路.神经网络没有一个严格的正式定义. 它的基本特点, 是试图模仿大脑的神经元之间传递,处理信息的模式.但是远远没有大脑的神经元那么复杂,所以从严格意义上来说
2016-05-11 17:19:04
993
转载 QML UI布局
http://blog.csdn.net/ieearth/article/details/41942245在QML应用程序中,布局无疑是一个非常重要的概念,QML可视化元素的布局方式多种多样,经常用到的就是anchors锚布局,其它还有Positioners、Layouts等,下面一一介绍。1、属性定位如果说我们的QML元素位置是固定的,那么使用x、y属性进行布局要比其它布
2016-05-06 14:24:01
995
原创 CMT跟踪算法笔记
作者网站链接:http://www.gnebehay.com/cmt/算法简介:The main idea behind CMT is to break down the object of interest into tiny parts, known as keypoints.In each frame, we try to again find the keypoints that we
2016-04-12 15:59:08
1468
原创 Fast guided Filter
这是何凯明博士2015年提出的快速导向滤波,论文链接如下:http://120.52.73.75/arxiv.org/pdf/1505.00996v1.pdf下图是导向滤波的原理图关于具体理论在博客的上一篇中有详细的介绍这里节选出普通算法和快速导向滤波的算法对比图
2016-04-06 18:18:54
5871
1
转载 去雾中关于导向滤波的笔记
转自 :http://blog.csdn.net/aichipmunk/article/details/20704681与双边滤波最大的相似之处,就是导向滤波同样具有保持边缘特性关于局部线性:可以参看下图,该模型认为,某函数上一点与其邻近部分的点成线性关系,一个复杂的函数就可以用很多局部的线性函数来表示,当需要求该函数上某一点的值时,只需计算所有包含该点的线性函数的值并做平均即可
2016-03-29 15:50:53
6635
原创 整理何凯明去雾算法代码优化
这个函数求取三个通道中最小值,然后以最小值组成一幅灰度图cv::Mat minChannel(const cv::Mat &src){cv::Mat dst;dst.create(src.size(),src.type()); for (int i = 0; i < height; i++) { const uchar* imgP = src.ptr(
2016-03-25 11:04:03
5790
转载 整理的比较好的图像去雾算法
1 首先是何博士2009年在CVPR上的一篇paper转自http://blog.csdn.net/baimafujinji/article/details/27206237?ticket=ST-264104-uEM9GFfaos96lqSCMO4R-passport.csdn.net现在结果已经比较细腻了,但是显然图像有些暗。何博士在论文中也有
2016-03-21 17:15:00
11791
1
原创 机器学习之基本概念
交叉验证是一种常用的模型选择的方法一般如果样本充足,会随机地将数据集切成三个部分,分别为训练集(用来训练模型),验证集(用来模型的选择),测试集(用于最终对学习方法的评估)。1 简单交叉验证随机地将已知数据分为两部分,一部分用于训练,一部分用于测试,然后用训练集得到在各种条件下的训练模型,再在测试集上评估各个模型的测试误差,选出测试误差最小的模型。2 S折交叉验证S-fold
2016-02-01 17:53:59
574
转载 机器学习关于过拟合和正则化的笔记
原文链接:http://www.cnblogs.com/jianxinzhou/p/4083921.html1. The Problem of Overfitting1还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房子面积增大,住房价
2016-01-14 17:38:52
2437
转载 机器学习算法一览,应用建议与解决思路
作者:寒小阳时间:2016年1月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/50469334声明:版权所有,转载请联系作者并注明出处很经典啊,我把一些比较重要的加粗了1.引言提起笔来写这篇博客,突然有点愧疚和尴尬。愧疚的是,工作杂事多,加之懒癌严重,导致这个系列一直没有更新,向关注该系列的同学们道
2016-01-14 17:25:59
7410
原创 2014新跟踪算法KCF笔记 --续2
TrackerKCF继承与跟踪基类TrackerTracker的两个函数init,update调用的是initImpl和updateImpl,每个子类对应这各自的initImpl和updateImpl实现.在TrackerKCF类的定义在trackerKCF.cpp中有这样一个类TrackerKCFImpl ,继承于TrackerKCF ,KCF的初始化init和更新update在这个类里
2016-01-13 15:52:13
5550
2
原创 2014新跟踪算法KCF笔记 --续(代码部分)
KCF跟踪在opencv3.1中集成了,在opencv_contrib/tracking中有,opencv_contrib这个需要重新编译一下opencv3.1才能get.windows下的编译方法如下网址http://blog.csdn.net/yomo127/article/details/50474955可以在git上直接下载也可,地址如下https://github.com/I
2016-01-11 16:27:15
28674
5
原创 图像滤镜的一些加速和改进--笔记
滤镜有很多开源代码包,imageshop,tinyimage,还有安卓的源码包,看过安卓的源码包,感觉还有很大的提升空间.http://blog.csdn.net/jingwen3699/article/details/7770287 这个博客有介绍,看看你就知道,至少针对图像遍历像素有很多加速的方法可用.列出我整理出的速度最快的几个,基于opencv/*adjust brightn
2016-01-04 14:34:34
1120
原创 2014新跟踪算法KCF笔记
作者的主页:http://home.isr.uc.pt/~henriques/可以下载到文章和代码,文章的名字叫 High-Speed Tracking with Kernelized Correlation Filters.总结来说,这也是一种Tracking By Detection的跟踪方法,跟TLD,OAB同宗,以跟踪对象为正样本,以周围坏境为负样本,训练一个判别分类器.pap
2015-12-29 17:07:24
37442
15
翻译 prolog语法大全
官网在 http://www.gprolog.org/manual/gprolog.html#sec32!/0, 7.2.1, 7.2.3’.’/2, 8.23.1(’,’)/2, 7.2.2(*->)/2, 7.2.2(-->)/2, 8.17.1(->)/2, 7.2.2(;)/2, 7.2.2(=)/2, 8.2.1(=..)
2015-08-11 11:03:22
5141
原创 快速对图像的像素进行操作 opencv 实战
OpenCV 如何对图像的像素进行操作2013年10月03日 ⁄ 综合⁄ 共 2952字 ⁄ 字号小 中 大 ⁄ 评论关闭对图像的像素进行操作,我们可以实现空间增强,反色等目的。让我们先来看一下内存空间中图像矩阵,也就是Mat的矩阵数值部分是怎么存储的:如果图像是一幅灰度图像,他就像这样,从左到右,从上到下,依次是矩阵的每一行每一列,这时候矩阵M(i,j)的值自然就是当
2015-04-14 10:17:05
48501
5
原创 ubuntu14.04 配置opencv249种种问题记录
首先如果你的运气足够好,你完全可以按照 :http://blog.csdn.net/codeforces_sphinx/article/details/8246546或者opencv中文论坛上的linux下opencv的安装方法但是我的运气不好,上述两种方法安装不了,参考这个:点击打开链接我把过程分析如下.由于opencv的cmakelist里依赖一些库,所有要先配
2015-04-10 16:59:47
9374
1
Qt里的QMediaPlayer类播放视频所用的解码器
2014-11-20
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅