视觉slam学习笔记 写在最前面: SLAM特指:特指搭载传感器的主体,在没有环境先验的信息情况下,在运动过程中建立环境模型,通过估计自己的运动。 SLAM的目的是解决两个问题:1、定位 2、地图构建 也就是说,要一边估计出传感器自身的位置,一边要建立周围环境的模型 最终的目标:实时地,在没有先验知识的情况下进行定位和地图重建。 当相机作为传感器的时候,我们要做的就是根据一张张连续运动的图像,从
TensorFlow 中文资源精选,官方网站,安装教程,入门教程,实战项目,学习路径 Awesome-TensorFlow-ChineseTensorFlow 中文资源全集,学习路径推荐:官方网站,初步了解。安装教程,安装之后跑起来。入门教程,简单的模型学习和运行。实战项目,根据自己的需求进行开发。很多内容下面这个英文项目:Inspired by https://github.com/jtoy/awesome-tensorflow官方网站
整理的比较好的图像去雾算法 1 首先是何博士2009年在CVPR上的一篇paper转自http://blog.csdn.net/baimafujinji/article/details/27206237?ticket=ST-264104-uEM9GFfaos96lqSCMO4R-passport.csdn.net现在结果已经比较细腻了,但是显然图像有些暗。何博士在论文中也有
有用的函数--功能:求平方根倒数 来源于 著名游戏《雷神之锤III》,它的代码在2002年左右被披露,发现了一段用于快速计算平方根倒数的代码 float InvSqrt (float x) { float xhalf = 0.5f*x; int i = *(int*)&x; // get bits for floating value i = 0x5f3759df - (i
深度学习实践课程--fast.ai 资料整理 今天要推荐一门深度学习的好课程,来自Fast.ai的Deep learning course!Welcome to fast.ai's 7 week course,Practical Deep Learning For Coders, Part 1, taught by Jeremy Howard (Kaggle's#1 competitor 2 years running, and
VINS(三)初始化与相机IMU外参标定 VINS(四)初始化与相机IMU外参标定 和单目纯视觉的初始化只需要获取R,t和feature的深度不同,VIO的初始化话通常需要标定出所有的关键参数,包括速度,重力方向,feature深度,以及相机IMU外参Rbc和pbc。一. 外参旋转矩阵初始化在Feature Detection and Tracking模块中,利用Harris特征点匹配通过基础矩阵和Ra
STL剖析笔记 序列式容器元素可序,但未必有序。vectorvector的数据结构与array相似,不同在于array是静态空间,一旦配置了内存空间就不能改变,如果要更换内存大小,需要配置一个新空间,然后将元素从旧地址一一搬到新地址,再把原来的旧空间释放。而vector是动态空间,新加入元素时,会自动扩充空间以容纳新元素。vector源码// 默认allocator为alloc, 其具体使用版本请参照<st...
小米面试题看并查集 首先,我们从一道题来引出这个问题。假如已知有n个人和m对好友关系(存于数字r)。如果两个人是直接或间接的好友(好友的好友的好友…),则认为他们属于同一个朋友圈,请写程序求出这n个人里一共有多少个朋友圈。假如:n = 5,m = 3,r = {{1 , 2} , {2 , 3} , {4 , 5}},表示有5个人,1和2是好友,2和3是好友,4和5是好友,则1、2、3属于一个朋友圈,4、5属于另一个...
什么时候神经网络可以接受任意的输入? 首先要搞清楚这个事情的源头,在迁移学习中,要进行模型迁移,一般都会把预训练模型的后面的全连接层去掉,然后用新的数据集训练,得到自己特色的模型。我们知道卷积其实是体征提取的过程,图像再进行卷积的时候,因为每一个卷积核中权值都是共享的,因此无论输入图像的尺寸是多大的都可以都是按照步长滑动做卷积,只不过都是经过卷积运算,不同大小的输入图片提取出的卷积特征的大小也是不同的。所以卷积层很友好,它是不会限
tensorflow--tf.nn.softmax_cross_entropy_with_logits的用法 在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?首先明确一点,loss是代价值,也就是我们要最小化的值tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)除去name参数用以指定该操作的name,
讲清楚了反卷积 搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里。先来规范表达为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同。记号: i,o,k,p,s 分别表示:卷积/反卷积的输入大小 input size,卷积/反卷积输出大小 out
神经光流网络——用卷积网络实现光流预测(FlowNet: Learning Optical Flow with Convolutional Networks) 目录目录文章说明光流原理神经光流网络结构介绍1 收缩部分网络结构flownetsimple结构flownetcorr结构2 放大部分网络结构训练数据集1 flying chairs数据集实验与结果分析Flownetsimple与Flownetcorr对比1 文章说明这周学习了一篇文章,文章的名字
目标检测的非最大值抑制-NMS object detection[NMS][非极大抑制]非极大抑制,是在对象检测中用的较为频繁的方法,当在一个对象区域,框出了很多框,那么如下图:上图来自这里目的就是为了在这些框中找到最适合的那个框,主要就是通过迭代的形式,不断的以最大得分的框去与其他框做iou操作,并过滤那些iou较大(即交集较大)的框按照github上R-CNN的matlab代码
BN(batch Normalization)笔记 l BN(batch Normalization)What is BN通常在神经网络训练开始前,都要对输入数据做一个归一化处理Why BN?1. 提升泛华能力神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低;2. 提高训练速度一旦每批训练数据的分布各不相同(batch 梯度下降),那么网络就要在每
NIPS 2106 优秀论文和代码下载地址集锦--持续更新 Using Fast Weights to Attend to the Recent Past (https://arxiv.org/abs/1610.06258)Repo: https://github.com/ajarai/fast-weightsLearning to learn by gradient descent by gradient descen
tensorflow1.3 API学习笔记 1 tf.layers.conv2d 卷积层https://www.tensorflow.org/versions/r1.3/api_docs/python/tf/layers/conv2dconv2d( inputs, filters, kernel_size, strides=(1, 1), padding='valid', d
撸一撸 ICML2016的CReLU 此方法来源于:ICML2016 Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units.这篇论文~~实验代码 :https://github.com/albanie/CReLU可以在理解原理的基础上撸一遍。在tenso