本文地址:http://blog.csdn.net/morewindows/article/details/12683723 转载请标明出处,谢谢。
欢迎关注微博:http://weibo.com/MoreWindows
首先看看题目要求:
给定一个无序的整数数组,怎么找到第一个大于0,并且不在此数组的整数。比如[1,2,0]返回3,[3,4,-1,1]返回2,[1, 5, 3, 4, 2]返回6,[100, 3, 2, 1, 6,8, 5]返回4。要求使用O(1)空间和O(n)时间。
这道题目初看没有太好的思路,但是借鉴下《白话经典算法系列之十 一道有趣的GOOGLE面试题》这篇文章,我们不发现使用“基数排序”正好可以用来解决这道题目。
以{1, 3, 6, -100, 2}为例来简介这种解法:
从第一个数字开始,由于a[0]=1,所以不用处理了。
第二个数字为3,因此放到第3个位置(下标为2),交换a[1]和a[2],得到数组为{1, 6, 3, -100, 2}。由于6无法放入数组,所以直接跳过。
第三个数字是3,不用处理。
第四个数字是-100,也无法放入数组,直接跳过。
第五个数字是2,因此放到第2个位置(下标为1),交换a[4]和a[1],得到数组为{1, 2, 3, -100, 6},由于6无法放入数组,所以直接跳过。
此时“基数排序”就完成了,然后再从遍历数组,如果对于某个位置上没该数,就说明数组缺失了该数字。如{1, 2, 3, -100, 6}缺失的就为4。
这样,通过第i个位置上就放i的“基数排序”就顺利的搞定此题了。
代码也非常好写,不过在交换两数时要注意判断下两个数字是否相等,不然对于像{1, 1, 1}这样的数据会出现死循环。
完整的代码如下:
- // 【白话经典算法系列之十六】“基数排序”之数组中缺失的数字
- // by MoreWindows( http://blog.csdn.net/MoreWindows )
- // 欢迎关注http://weibo.com/morewindows
- #include <stdio.h>
- void Swap(int &a, int &b)
- {
- int c = a;
- a = b;
- b = c;
- }
- int FindFirstNumberNotExistenceInArray(int a[], int n)
- {
- int i;
- // 类似基数排序,当a[i]>0且a[i]<N时保证a[i] == i + 1
- for (i = 0; i < n; i++)
- while (a[i] > 0 && a[i] <= n && a[i] != i + 1 && a[i] != a[a[i] - 1])
- Swap(a[i], a[a[i] - 1]);
- // 查看缺少哪个数
- for (i = 0; i < n; i++)
- if (a[i] != i + 1)
- break;
- return i + 1;
- }
- void PrintfArray(int a[], int n)
- {
- for (int i = 0; i < n; i++)
- printf("%d ", a[i]);
- putchar('\n');
- }
- int main()
- {
- printf(" 【白话经典算法系列之十六】“基数排序”之数组中缺失的数字\n");
- printf(" -- by MoreWindows( http://blog.csdn.net/MoreWindows ) --\n");
- printf(" -- http://blog.csdn.net/morewindows/article/details/12683723 -- \n\n");
- const int MAXN = 5;
- //int a[MAXN] = {1, 2, 3, 4, 7};
- //int a[MAXN] = {1, 3, 5, 4, 2};
- int a[MAXN] = {2, -100, 4, 1, 70};
- //int a[MAXN] = {2, 2, 2, 2, 1};
- PrintfArray(a, MAXN);
- printf("该数组缺失的数字为%d\n", FindFirstNumberNotExistenceInArray(a, MAXN));
- return 0;
- }
运行结果如下图所示: