诗酒趁养狗

瞎JB写/翻译/折腾/玩

排序:
默认
按更新时间
按访问量

做了个在线流程图绘制工具

数字绘 在线线框图、流程图、网络图、组织结构图、UML、BPMN绘制网站,绘制完成之后可以导出成图片、SVG、XML,也可以保存在云端并能分享给其他用户。 网站 数字绘 源码 轮子 Cloudreve 基于ThinkPHP构建的网盘系统,能够助您以较低成本快速搭建起公私兼备的网盘。 mx...

2018-11-21 13:55:13

阅读数:4

评论数:0

CNTK API文档翻译(25)——后记

这篇不是翻译,是我自己写的后记,CNTK API文档翻系列译完结。CNTK是微软的一个深度学习套件,他的存在主要是可以让开发人员不用知道里面的各种算法的细节,就能使用训练深度神经网络模型。他提供了已经封装好的组件来给我们使用:你不需要知道随机梯度下降下降算法和反向传播算法,因为CNTK提供了一个s...

2017-10-18 19:19:24

阅读数:936

评论数:1

CNTK API文档翻译(24)——使用深度迁移学习进行图像识别

本教程展示了如何在已经训练好的模型中使用迁移学习(Transfer Learning)以及如何用于你自己的领域。本教程需要你的电脑安装了支持CUDA的GPU。问题这里有一些花的图片,你需要给他们分类,下面的图片展示了数据中的一些样本数据。 在本教程的14期中我们有介绍用于图像识别的残差神经网络,...

2017-10-09 23:34:57

阅读数:1318

评论数:0

CNTK API文档翻译(23)——使用CTC标准训练声学模型

本教程假定所有读者都完成了前10期教程,并且对声学建模的数据形式有基础的了解。本教程介绍了CNTK种可以用于训练以CTC(Connectionist Temporal Classification)训练准则为例的语音识别深度神经网络的模块。介绍CNTK实现的CTC基于A. Graves等人发表的论...

2017-09-19 22:21:34

阅读数:615

评论数:0

CNTK API文档翻译(22)——取样Softmax函数

在分类和预测的问题中,一个典型的准则函数是使用softmax的交叉熵成本函数。如果输出的分类值的数据很大,准则函数和相应参数的计算量可能会相当巨大。取样Softmax函数可能是加速训练的一个方向。选择代码运行环境在我们进入问题之前,先引入一些需要的库和做一些环境设置。# Use a functio...

2017-09-15 21:33:08

阅读数:965

评论数:0

CNTK API文档翻译(21)——深度卷积GAN处理MSIST数据基础

完成本期教程需要完成本系列的第四篇教程。介绍生成模型在深度学习的半监督或者非监督学习领域引起了广泛的专注,这些领域传统上都是使用判别模型的。概览在上一个教程中我们介绍了Goodfellow等人在NIPS2014上提出来的原生GAN网络。这个开创新的网络现在已经被很好的扩展,并发表了很多技术。其中深...

2017-09-11 22:35:41

阅读数:622

评论数:0

CNTK API文档翻译(20)——GAN处理MSIST数据基础

完成本期教程需要完成本系列的第四篇教程。介绍生成模型在深度学习的半监督或者非监督学习领域引起了广泛的专注,这些领域传统上都是使用判别模型的。生成模型的思想是线收集某个研究领域巨量的数据,然后训练得到一个可以生成这样的数据集的模型。这是一个需要大量训练和海量数据的热门研究领域。根据OpenAI博客的...

2017-09-07 21:30:35

阅读数:715

评论数:0

CNTK API文档翻译(19)——艺术风格转变

本教程展示了如何将一张图片的风格转换成另外一种。这让我们可以将一张原始照片渲染成世界名画的风格。与创建一个好看的图片不同,在本教程中你讲学习如何在CNTK中加载一个已经训练好的VGG模型,如何基于输入变量获取对应的梯度,以及如何在不使用CNTK的时候使用梯度。我们使用Leon A. Gatys等人...

2017-09-03 19:29:41

阅读数:681

评论数:0

CNTK API文档翻译(18)——多对多神经网络处理文本数据(2)

(本期教程需要翻译的内容实在是太多了,将其分割成两期,上期主要讲理论和模型创建,本期主要讲训练、测试、优化等)训练在我们开始训练之前,我们将定义训练封装器、贪婪解码封装器以及用于训练模型的准则函数。首先是训练封装器。def create_model_train(s2smodel): # m...

2017-08-30 21:54:48

阅读数:786

评论数:0

CNTK API文档翻译(17)——多对多神经网络处理文本数据(1)

(本期教程需要翻译的内容实在是太多了,将其分割成两期,本期主要讲理论和模型创建,下期主要讲训练、测试、优化等)背景和简介本教程将带你过一遍多对多神经网络基础,以及如何在CNTK中实现它。具体来说,我们将实现一个多对多模型用来实现字音转换。我们首先会介绍多对多网络的基本理论、解释数据细节以及如何下载...

2017-08-18 19:21:33

阅读数:3088

评论数:2

CNTK API文档翻译(16)——增强学习基础

增强学习(RL,Reinforcement learnin)是一个由行为心理学衍生出来的机器学习领域,主要是有关软件代理如何在一个特定的环境中尽可能的获得得分。在机器学习中,为了让增强学习算法利用动态编程技术,这种环境通常被指定为马尔可夫决策过程。在有些机器学习情况中,我们不能够直接获得数据的标签...

2017-08-14 22:37:15

阅读数:727

评论数:0

CNTK API文档翻译(15)——自然语言理解

本教程展示了如何实现一个递归神经网络来处理文本,为航空出行信息服务(ATIS)数据提供分词标记任务(将不同的词分到各自的类中,分类由训练数据集提供)。我们从文字线型降维开始,然后训练和使用LSTM神经网络。这将被扩展到相邻的单词并且双向运行。最后我们将完成一个意图分类器。本教程中你将实践到的技术包...

2017-08-09 19:47:16

阅读数:1715

评论数:0

CNTK API文档翻译(14)——实验图像识别

这个动手实验展示了如何使用CNTK Python API中的卷积神经网络实现图像识别。本教程将从最简单的前馈卷积神经网络实现CIFAR数据集分类开始,之后会一点点的往我们的神经网络里面加入高级特性。最后你将实现一个VGG神经网络和残差神经网络(Residual Network),就想赢得Image...

2017-08-05 23:36:01

阅读数:1568

评论数:0

CNTK API文档翻译(13)——CIFAR-10数据准备

本教程将展示如何为CNTK里的深度学习算法准备图像数据集。CIFAR-10数据集是一个常用从8000万张小图片中标记一部分而成的图像分类数据集,,由Alex Krizhevsky、Vinod Nair和 Geoffrey Hinton收集整理。CIFAR-10数据集不包含在CNTK中,不过可以非常...

2017-08-01 22:16:34

阅读数:679

评论数:0

CNTK API文档翻译(12)——CNTK进阶

这篇教程展示了CNTK中一些比较高级的特性,目标读者是完成了之前教程或者是使用过其他机器学习组件的人。如果你是完完全全的新手,请先看我们之前的十多期教程。欢迎来到CNTK。深度神经网络正在重新定义计算机编程。在命令式编程、函数式变成和申明式变成之外,我们有有了一种完全不同的编程方式,这种方式是有效...

2017-07-28 18:44:36

阅读数:2382

评论数:0

CNTK API文档翻译(11)——使用LSTM预测时间序列数据(物联网数据)

在上一期我们开发了一个简单的LSTM神经网络来预测时序数据的值。在本期我们要把这模型用在真实世界的物联网数据上。作为示例,我们会根据之前几天观测到的数据预测太阳能电池板的日产电量。太阳能发电量预测是一个重要且艰难的问题。太阳能产电量的预测还与天气预测密切相关。实际上,这个问题分为两部分,第一部分,...

2017-07-24 22:10:31

阅读数:2573

评论数:0

CNTK API文档翻译(10)——使用LSTM预测时间序列数据

本篇教程展示如何用CNTK构建LSTM来进行时间序列数据的数值预测。目标我们使用一个连续函数的模拟数据集(本例使用正弦曲线)。对于函数y=sin(t),我们使用符合这个函数的N个值来预测之后的M个值。 在本教程中我们将使用基于LSTM的模型。LSTM比较擅长从以往的数据中学习,因此比较适合我们的...

2017-07-20 21:00:25

阅读数:2620

评论数:0

CNTK API文档翻译(9)——使用自编码器压缩MNIST数据

在本期教程之前需要先完成第四期教程。介绍本教程介绍自编码器的基础。自编码器是一种用于高效编码的无监督学习人工神经网络,换句话说,自编码器用于通过机器学习学来的算法而不是人写的算法进行有损数据压缩。由此而来,使用自编码器编码的目的是训练出一套数据表示方法来编码或者说表述一个数据集,经常被用于数据降维...

2017-07-16 19:23:56

阅读数:1181

评论数:0

CNTK API文档翻译(8)——使用Pandas和金融数据进行时序数据基本分析

本期将带来使用CNTK处理时间序列数据的教程。本教程中会展示怎样为深度学习算法准备时间数据、训练神经网络和评估神经网络。具体来说,我们会探究预测交易性开放式指数基金(Exchange-traded Funds,EFI)的分类是否靠谱,进而通过这种简单的分类来决定是买是卖。本教程仅仅是CNTK分析时...

2017-07-11 20:07:39

阅读数:924

评论数:0

CNTK API文档翻译(7)——对MNIST数据使用卷积神经网络

在本期教程之前需要先完成第四期教程。在本期教程中,我们将使用MNIST训练卷积神经网络。介绍卷积神经网络(Convolutional Neural Network,CNN/ConvNet)是一种与上一篇文章解释的多层感知机神经网络相似的前馈人工神经网络。卷积神经网络利用了数据的空间性质,在空间性质...

2017-07-07 15:58:59

阅读数:2192

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭