分页查询后面的页码报错exceeding the allowed memory limit for a single SQL query

分页查询在查询后面的页码时经常遇到exceeding the allowed memory limit for a single SQL query错误,主要原因在于 LIMITOFFSET 的组合在处理大数据量时的性能问题。以下是一些详细的解释和解决方案:

原因分析
1. 内存消耗大:
  • 当你使用 LIMIT OFFSET 进行分页查询时,数据库需要先扫描并跳过前面的行数,然后再返回指定数量的行。随着页码的增加,OFFSET 的值也会增加,导致数据库需要扫描的数据量越来越大。

  • 例如,查询第 100 页,每页 100 条记录,OFFSET 为 9900,数据库需要先扫描前 9900 行,然后再返回接下来的 100 行。这个过程中会消耗大量的内存。

2. 索引使用问题:
  • 如果查询条件没有使用索引,或者索引不覆盖查询的所有列,数据库可能需要进行全表扫描,进一步增加内存消耗。
3. 中间结果集:

在进行 GROUP BY JOIN 操作时,数据库需要在内存中维护中间结果集。随着数据量的增加,这些中间结果集可能会占用大量内存。

解决方案
1. 优化查询条件:

确保查询条件尽可能严格,减少需要处理的数据量。
使用索引优化查询性能,确保查询条件能够充分利用索引。

2. 使用覆盖索引:

确保查询的所有列都在索引中,这样数据库可以直接从索引中获取数据,而不需要回表查询。

3. 使用键值分页:

使用键值分页(也称为游标分页)代替传统的 LIMIT 和 OFFSET 分页。键值分页通过记录上次查询的最后一个记录的主键值,来作为下次查询的起点。

-- 第一次查询
SELECT * FROM your_table ORDER BY id LIMIT 100;

-- 第二次查询
SELECT * FROM your_table WHERE id > 100 ORDER BY id LIMIT 100;

-- 第三次查询
SELECT * FROM your_table WHERE id > 200 ORDER BY id LIMIT 100;
4. 分批处理数据:

将大数据量的查询拆分成多个小批量的查询,逐步处理数据。

5. 使用临时表:

将中间结果存储在临时表中,然后再进行后续操作。

示例代码
1. 优化查询条件

确保查询条件尽可能严格,减少需要处理的数据量。

StudengtDto studengtDto = new StudengtDto();
studengtDto.setName("张三");
studengtDto.setUnitName("某单位");
// 添加其他必要的过滤条件
2. 使用覆盖索引

确保查询的所有列都在索引中。

CREATE INDEX idx_covering ON your_table (id, column1, column2, ...);
3. 使用键值分页
-- 第一次查询
SELECT * FROM your_table ORDER BY id LIMIT 100;

-- 第二次查询
SELECT * FROM your_table WHERE id > 100 ORDER BY id LIMIT 100;

-- 第三次查询
SELECT * FROM your_table WHERE id > 200 ORDER BY id LIMIT 100;
4. 分批处理数据

将大数据量的查询拆分成多个小批量的查询。

public void processLargeDataset(int batchSize) {
    int offset = 0;
    boolean hasMoreData = true;
    while (hasMoreData) {
        List<YourEntity> results = fetchBatch(offset, batchSize);
        if (results.isEmpty()) {
            hasMoreData = false;
        } else {
            processResults(results);
            offset += batchSize;
        }
	}
}
private List<YourEntity> fetchBatch(int offset, int batchSize) {
    String query = "SELECT * FROM your_table ORDER BY id LIMIT ? OFFSET ?";
    // 执行查询并返回结果
    return jdbcTemplate.query(query, new Object[]{batchSize, offset}, new YourEntityRowMapper());
}

private void processResults(List<YourEntity> results) {
    // 处理查询结果
}
5. 使用临时表

将中间结果存储在临时表中,然后再进行后续操作。

-- 创建临时表
CREATE TEMPORARY TABLE temp_results AS
SELECT * FROM your_table WHERE some_condition ORDER BY id LIMIT 10000;

-- 分页查询临时表
SELECT * FROM temp_results ORDER BY id LIMIT 100;
总结

通过优化查询条件、使用覆盖索引、使用键值分页、分批处理数据以及使用临时表,你可以有效减少分页查询在处理大数据量时的内存消耗,避免 exceeding the allowed memory limit for a single SQL query 错误。

### 解决 Flink 被 YARN 终止的问题 当 Flink 应用程序因为线程数超过 YARN 配置的最大限制而被终止时,可以采取多种措施来解决问题。具体方法如下: #### 修改 YARN 容器资源配置 调整 YARN 上容器的资源配置是一个有效的解决方案。通过增加每个容器分配给应用程序的内存和 CPU 数量,可以减少因资源不足而导致的任务失败。 ```xml <property> <name>yarn.nodemanager.resource.memory-mb</name> <value>8192</value> </property> <property> <name>yarn.scheduler.maximum-allocation-vcores</name> <value>4</value> </property> ``` 这些设置可以在 `yarn-site.xml` 文件中找到并修改[^1]。 #### 设置合理的 TaskManager 和 JobManager 参数 合理设定 Flink 中 TaskManager (TM) 及其子组件的数量也很重要。这可以通过以下参数实现: - **taskmanager.numberOfTaskSlots**: 控制单个 TM 实例中的 slot 数目; - **parallelism.default**: 设定默认并行度; 适当降低上述两个参数可以帮助控制启动过多线程的情况发生。 ```properties taskmanager.numberOfTaskSlots=4 parallelism.default=4 ``` 以上配置应放置于 flink-conf.yaml 文件内。 #### 启用动态资源管理功能 启用 Flink 动态资源扩展特性能够使集群更灵活地应对负载变化。此选项允许根据实际需求自动增减计算节点数量,从而避免固定规模下可能出现的瓶颈问题。 ```yaml restart-strategy: failure-rate failure-rate-interval: 5 min max-failures-per-interval: 3 attempt-number: 3 min-idle-state-retention-time: 0 ms dynamic-resource-enabled: true ``` 这段 YAML 片段展示了如何开启这一机制以及一些关联属性的推荐值。 #### 日志监控与告警 最后,在日常运维过程中保持良好的日志记录习惯至关重要。定期审查 JobManager 和 TaskManagers 的日志文件有助于提前发现潜在风险点,并及时做出响应处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值