DP——环形与后效性处理

环形与后效性处理

  1. 休息时间(环形问题但不用断环成链)
  • 题目大意:一个环,每个点有价值,选 BBB 个点,要特殊要求:当前节点贡献价值只有当连续的上一个选择才能,对于选择的每个连续区间的第一个,不产生价值贡献,求最大值。

思路

首先我们来考虑,当环断开变成链怎么做,问题退化成了:nnn 个物品,背包容量是 BBB,每个物品的价值满足上述要求,求在使得背包容量恰好装满的最大值。

因为需要考虑上一个位置是否选择,所以我们有

fi,j,0/1f_{i,j,0/1}fi,j,0/1 表示前 iii 个物品,装满 jjj 的容量,并且第 iii 个位置选择或者不选择的最大值。转移也很简单,只需要考虑上一个是否连续即可
fi,j,0=max⁡{fi−1,j,1 fi−1,j,1}fi,j,1=max⁡{fi−1,j−1,0 fi−1,j−1,1+a[i]} f_{i,j,0}=\max\{f_{i-1,j,1}\ f_{i-1,j,1}\}\\ f_{i,j,1}=\max\{f_{i-1,j-1,0}\ f_{i-1,j-1,1}+a[i]\} fi,j,0=max{fi1,j,1 fi1,j,1}fi,j,1=max{fi1,j1,0 fi1,j1,1+a[i]}
时间复杂度为 O(n2)O(n^2)O(n2)

一个十分暴力的想法就是断环成链,可是发现时间复杂度在 O(N3)O(N^3)O(N3) ,会超时。

这里学到一个新的思路来解决环形问题:我们发现,当我们断开第 111 和第 NNN 之间的环的时候,如果最优结果中第一和第 NNN 不需要连续,那么我们的答案就是最优答案,所以现在我们只需要考虑二者连续的情况,而二者连续的情况我们只需要强制选择就可以了,如何强制选择呢,也就是 a[1]a[1]a[1] 可以做出贡献,并且最后的答案中必须最后一个位置选。

表现在代码中为:f1,1,1=a[1],ans=fn,m,1f_{1,1,1}=a[1],ans=f_{n,m,1}f1,1,1=a[1],ans=fn,m,1

虽然时间复杂度在 O(N2)O(N^2)O(N2) ,但是空间似乎有点爆炸,

洛谷是 128MB128MB128MB,ACwing是 64MB64MB64MB ,用滚动数组优化就可以了

#include<bits/stdc++.h>
using namespace std;
int read(){int x;scanf("%d",&x);return x;}
const int B=2e5+10;
const int inf=0x3f3f3f3f;
int T;
int n,m;
int f[3][3835][2]; 
int a[B]; 
void work()
{
	cin>>n>>m;
	for (int i=1;i<=n;i++)
	{
		a[i]=read();
	}
	int x=0;
	for (int i=1;i<=n;i++) a[i+n]=a[i];
	int ans=0;
	memset(f,-0x3f3f3f3f,sizeof(f));
	f[0][0][0]=0;
	f[0][1][1]=0;
	for (int i=2;i<=n;i++)
	{
		x^=1;
		for (int j=0;j<=min(i,m);j++)
		{
			f[x][j][0]=max(f[x^1][j][0],f[x^1][j][1]);
			if (j-1>=0) 
			{
				f[x][j][1]=f[x^1][j-1][0];
				//f[i-1][j-1][1] 必须保证 j-1>=1 
				if (j-1>=1) f[x][j][1]=max(f[x][j][1],f[x^1][j-1][1]+a[i]);
			}
		} 
	}
	ans=max(f[x][m][0],max(f[x][m][1],ans));
	
	x=0;
	memset(f,-0x3f3f3f3f,sizeof(f));
	f[0][1][1]=a[1];//厉害,直接考虑断链造成的影响 
	f[0][0][0]=0;
	for (int i=2;i<=n;i++)
	{
		x^=1;
		for (int j=0;j<=min(i,m);j++)
		{
			f[x][j][0]=max(f[x^1][j][0],f[x^1][j][1]);
			if (j-1>=0) 
			{
				f[x][j][1]=f[x^1][j-1][0];
				//f[i-1][j-1][1] 必须保证 j-1>=1 
				if (j-1>=1) f[x][j][1]=max(f[x][j][1],f[x^1][j-1][1]+a[i]);
			}
		} 
	}
	ans=max(f[x][m][1],ans);
	cout<<ans;
}
int main()
{
	T=1;
	while (T--) work();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值