环形与后效性处理
- 休息时间(环形问题但不用断环成链)
- 题目大意:一个环,每个点有价值,选 BBB 个点,要特殊要求:当前节点贡献价值只有当连续的上一个选择才能,对于选择的每个连续区间的第一个,不产生价值贡献,求最大值。
思路
首先我们来考虑,当环断开变成链怎么做,问题退化成了:nnn 个物品,背包容量是 BBB,每个物品的价值满足上述要求,求在使得背包容量恰好装满的最大值。
因为需要考虑上一个位置是否选择,所以我们有
fi,j,0/1f_{i,j,0/1}fi,j,0/1 表示前 iii 个物品,装满 jjj 的容量,并且第 iii 个位置选择或者不选择的最大值。转移也很简单,只需要考虑上一个是否连续即可
fi,j,0=max{fi−1,j,1 fi−1,j,1}fi,j,1=max{fi−1,j−1,0 fi−1,j−1,1+a[i]}
f_{i,j,0}=\max\{f_{i-1,j,1}\ f_{i-1,j,1}\}\\
f_{i,j,1}=\max\{f_{i-1,j-1,0}\ f_{i-1,j-1,1}+a[i]\}
fi,j,0=max{fi−1,j,1 fi−1,j,1}fi,j,1=max{fi−1,j−1,0 fi−1,j−1,1+a[i]}
时间复杂度为 O(n2)O(n^2)O(n2)
一个十分暴力的想法就是断环成链,可是发现时间复杂度在 O(N3)O(N^3)O(N3) ,会超时。
这里学到一个新的思路来解决环形问题:我们发现,当我们断开第 111 和第 NNN 之间的环的时候,如果最优结果中第一和第 NNN 不需要连续,那么我们的答案就是最优答案,所以现在我们只需要考虑二者连续的情况,而二者连续的情况我们只需要强制选择就可以了,如何强制选择呢,也就是 a[1]a[1]a[1] 可以做出贡献,并且最后的答案中必须最后一个位置选。
表现在代码中为:f1,1,1=a[1],ans=fn,m,1f_{1,1,1}=a[1],ans=f_{n,m,1}f1,1,1=a[1],ans=fn,m,1
虽然时间复杂度在 O(N2)O(N^2)O(N2) ,但是空间似乎有点爆炸,
洛谷是 128MB128MB128MB,ACwing是 64MB64MB64MB ,用滚动数组优化就可以了
#include<bits/stdc++.h>
using namespace std;
int read(){int x;scanf("%d",&x);return x;}
const int B=2e5+10;
const int inf=0x3f3f3f3f;
int T;
int n,m;
int f[3][3835][2];
int a[B];
void work()
{
cin>>n>>m;
for (int i=1;i<=n;i++)
{
a[i]=read();
}
int x=0;
for (int i=1;i<=n;i++) a[i+n]=a[i];
int ans=0;
memset(f,-0x3f3f3f3f,sizeof(f));
f[0][0][0]=0;
f[0][1][1]=0;
for (int i=2;i<=n;i++)
{
x^=1;
for (int j=0;j<=min(i,m);j++)
{
f[x][j][0]=max(f[x^1][j][0],f[x^1][j][1]);
if (j-1>=0)
{
f[x][j][1]=f[x^1][j-1][0];
//f[i-1][j-1][1] 必须保证 j-1>=1
if (j-1>=1) f[x][j][1]=max(f[x][j][1],f[x^1][j-1][1]+a[i]);
}
}
}
ans=max(f[x][m][0],max(f[x][m][1],ans));
x=0;
memset(f,-0x3f3f3f3f,sizeof(f));
f[0][1][1]=a[1];//厉害,直接考虑断链造成的影响
f[0][0][0]=0;
for (int i=2;i<=n;i++)
{
x^=1;
for (int j=0;j<=min(i,m);j++)
{
f[x][j][0]=max(f[x^1][j][0],f[x^1][j][1]);
if (j-1>=0)
{
f[x][j][1]=f[x^1][j-1][0];
//f[i-1][j-1][1] 必须保证 j-1>=1
if (j-1>=1) f[x][j][1]=max(f[x][j][1],f[x^1][j-1][1]+a[i]);
}
}
}
ans=max(f[x][m][1],ans);
cout<<ans;
}
int main()
{
T=1;
while (T--) work();
return 0;
}
5223

被折叠的 条评论
为什么被折叠?



