Chapter 3 Vector Spaces and Subspaces(Introduction to Linear Algebar written by Dr. Gilber Strang)

3.1 Spaces of Vectors

Subspaces 是一个需要满足以下两个条件的重要概念。

(1) v + w \bm v+\bm w v+w is in the subspace
(2) c v c\bm v cv is in the subspace

v \bm v v, w \bm w w are vectors in the subspace. c c c is any scalar.

  • Example 1 对于vectors(x,y),若要求 x ≥ 0 x \ge 0 x0 同时 y ≥ 0 y \ge 0 y0,则这个四分之一平面不是一个subspace。因为不满足条件(2),即如果 c = − 1 c=-1 c=1,则(cx, cy)不在原先的四分之一平面内。
  • Example 2 对于vector(x,y),若要求 x ⋅ y ≥ 0 x \cdot y \ge 0 xy0,即x或y同为正或同为负,则这个二分之一平面也不是一个subspace。虽然能否满足条件(2),但无法满足条件(1)。若 v = ( 2 , 3 ) \bm v = (2,3) v=(2,3), w = ( − 3 , − 2 ) \bm w = (-3,-2) w=(3,2),则 v + w = ( 2 − 3 , 3 − 2 ) = ( − 1 , 1 ) \bm v + \bm w = (2-3, 3-2) = (-1,1) v+w=(23,32)=(1,1),相加后的向量不在这个二分之一平面中。
  • 由上面的例子可知,平面或线的一部分不是subspace.

对于 A x = 0 Ax = 0 Ax=0, A不可逆的时候,也就是 x x x的解不唯一的时候,可用nullspace这个概念来概括。nullspace的表达方式的常量 c c c乘以special solution. 例如:
x 1 + 2 x 2 = 0 3 x 1 + 6 x 2 = 0 x_1 + 2x_2 = 0\\ 3x_1 + 6x_2 = 0 x1+2x2=03x1+6x2=0
After elimination:
x 1 + 2 x 2 = 0 0 = 0 x_1 + 2x_2 = 0\\ 0=0 x1+2x2=00=0
假定 x 2 = 1 x_2 = 1 x2=1,正因为这个假定,注定了这个解是special.
x 1 = − 2 x_1 = -2 x1=2. nullspace的表述如下:
矩阵 A = [ 1 2 3 6 ] A = \left[\begin{matrix} 1&2\\3&6 \end{matrix}\right] A=[1326]nullspace c [ 1 2 ] c\left[\begin{matrix} 1\\2 \end{matrix}\right] c[12].

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值