机器人抓取(七、八)—— kinect 相机的 ros 服务器及 基于gqcnn 抓取 ros 服务器

该博客介绍了使用AzureKinect相机的ROS服务器和基于gqcnn模型的抓取位姿估计,展示了在机器人抓取项目中的实际应用。作者强调gqcnn模型在多数情况下的准确性,并提醒注意机器人关节限位以避免不安全的轨迹规划。项目难点在于知识面广和工程性强,适合对此感兴趣的技术人员参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器人抓取系列七、八两篇发表在古月居了,链接如下:
机器人抓取(七)—— Azure Kinect 相机的 ros 服务器(Service)
机器人抓取(八)—— 基于 gqcnn 模型的抓取位姿估计 ros 服务器
欢迎关注。
机器人抓取项目是一个工程小 demo,没想到拖拖拉拉这么久才更新完。整个项目的难点在于涉及知识面广、工程性强,需要花费一点时间补充相关领域的基础知识。
实测 gqcnn 的 FullyConvolutionalGraspingPolicyParallelJaw 模型效果是超出预期的,绝大多数情况下能够准确的估计相机视野内随意摆放的任意形状物体的抓取位姿。
另外、务必给机器人关节设置限位,否则 moveit 轨迹规划器会规划出奇奇怪怪的轨迹,冒然运行会撞坏机器人!!!
至此,机器人抓取系列完结。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值