相关博客
- 图卷积神经网络理论基础
- 论文《Semi-Supervised Classification with Graph Convolutional Networks》
- GNN新手村指南
- Graph Convolutional Networks:从卷积到GCN
1 图卷积的演变
2 论文模型
3 实验结果
论文在如下几个任务中进行实验
- 在citation network中进行半监督的document classification。
- 在从knowledge graph中提取的bipartite graph中进行半监督的entity classification
实验数据说明如下
前三个Dataset是citation network数据集,节点表示文档,边表示引用的连接,label rate表示用来有监督训练的节点数量占总节点数量比例,第四个Dataset是bipartite graph数据集。
结果如下:
可以看出,在比较的几种算法中,论文GCN的在准确率和时间上都最好。