【论文阅读】从卷积到GCN---《Semi-Supervised Classification with Graph Convolutional Networks》

Graph Convolutional Networks:从卷积到GCN

相关博客

  1. 图卷积神经网络理论基础
  2. 论文《Semi-Supervised Classification with Graph Convolutional Networks》
  3. GNN新手村指南
  4. Graph Convolutional Networks:从卷积到GCN

1 图卷积的演变

在这里插入图片描述

2 论文模型

在这里插入图片描述

3 实验结果

论文在如下几个任务中进行实验

  • 在citation network中进行半监督的document classification。
  • 在从knowledge graph中提取的bipartite graph中进行半监督的entity classification
    实验数据说明如下
    在这里插入图片描述
    前三个Dataset是citation network数据集,节点表示文档,边表示引用的连接,label rate表示用来有监督训练的节点数量占总节点数量比例,第四个Dataset是bipartite graph数据集。
    结果如下:
    在这里插入图片描述
    可以看出,在比较的几种算法中,论文GCN的在准确率和时间上都最好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值