【BZOJ3716】[PA2014]Muzeum(坐标旋转)(贪心)(最大权闭合子图)

传送门


题解:

首先这道题的最大权闭合子图模型是很显然的,但是我们并不能建图拿来跑最大流。

考虑利用图的特殊性质把最大流贪心流出来。

首先所有坐标乘上余切然后旋转,把一个警卫看得到的所有手办放到左上方向。

将所有点按照横坐标从小到大排序。

处理一个警卫之前先把所有横坐标比他小的加入,然后从纵坐标最小的能流的开始贪心流就行了。

这样贪心的正确性是显然的,考虑我们把一个在较大纵坐标流的放到一个较小纵坐标流,那么显然后面纵坐标更大的能流的就更多,这样的操作不会使答案变坏。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

namespace IO{
	inline char gc(){
		static cs int Rlen=1<<22|1;
		static char buf[Rlen],*p1,*p2;
		return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,Rlen,stdin),p1==p2)?EOF:*p1++;
	}
	
	template<typename T>
	inline T get(){
		char c;T num;bool f=0;
		while(!isdigit(c=gc()))f=c=='-';num=c^48;
		while(isdigit(c=gc()))num=(num+(num<<2)<<1)+(c^48);
		return f?-num:num;
	}
	inline int gi(){return get<int>();}
}
using namespace IO;

using std::cerr;
using std::cout;
using pll=std::pair<ll,ll>;
#define fi first
#define se second 

cs int N=2e5+7;

int n,m;ll w,h,ans;
struct node{ll x,y,v;}a[N],b[N];
inline bool operator<(cs node &a,cs node &b){return a.x<b.x;}
std::set<pll> s;

signed main(){
#ifdef zxyoi
	freopen("museum.in","r",stdin);
#endif
	n=gi(),m=gi(),w=gi(),h=gi();
	for(int re i=1;i<=n;++i){
		ll x=gi()*h,y=gi()*w,v=gi();
		a[i]=(node){x+y,x-y,v};ans+=v;
	}std::sort(a+1,a+n+1);
	for(int re i=1;i<=m;++i){
		ll x=gi()*h,y=gi()*w,v=gi();
		b[i]=(node){x+y,x-y,v};
	}std::sort(b+1,b+m+1);
	for(int re i=1,j=1;i<=m;++i){
		while(j<=n&&a[j].x<=b[i].x)s.insert(pll(a[j].y,a[j].v)),++j;
		auto it=s.lower_bound(pll(b[i].y,0));ll flow=b[i].v;
		while(flow&&it!=s.end()){
			auto q=*it;s.erase(it);
			ll d=std::min(q.se,flow);
			flow-=d,ans-=d,q.se-=d;
			if(q.se)s.insert(q);
			else it=s.lower_bound(pll(b[i].y,0));
		}
	}
	cout<<ans<<"\n";
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zxyoi_dreamer

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值