一.TreeMap成员变量
//Comparator比较器接口,接口里面只有两个方法int compare(T o1, T o2);boolean equals(Object obj);
private final Comparator<? super K> comparator;
//根节点
private transient Entry<K,V> root = null;
private transient int size = 0;
private transient int modCount = 0;
二.TreeMap的Entry对象
static final class Entry<K,V> implements Map.Entry<K,V> {
//构成树的三个属性left,left,parent
K key;
V value;
Entry<K,V> left = null;
Entry<K,V> right = null;
Entry<K,V> parent;
boolean color = BLACK; //该节点红色还是黑色
}
三.构造函数
//默认构造函数时comparator为空,则插入到TreeMap里面的key必须实现Comparator接口
public TreeMap() {
comparator = null;
}
//用户指定Comparator
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
四.取数据
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
final Entry<K,V> getEntry(Object key) {
//如果用户指定了Comparable,用指定的
if (comparator != null)
return getEntryUsingComparator(key);
//get操作key不能为空
if (key == null)
throw new NullPointerException();
//如果用户没指定Comparable,用key作为Comparable
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
//以根节点当前节点开始遍历搜索
while (p != null) {
//拿被检索的节点的值和当前节点的值比较
int cmp = k.compareTo(p.key);
//如果被检索的节点的值更小,则以当前节点的左子节点作为新的当前节点。
if (cmp < 0)
p = p.left;
//如果被检索的节点的值更大,则以当前节点的右子节点作为新的当前节点。
else if (cmp > 0)
p = p.right;
//被检索的节点的值和当前节点的值相等,则是我们需要的节点
else
return p;
}
//找不到返回null
return null;
}
//和上面逻辑一样
final Entry<K,V> getEntryUsingComparator(Object key) {
K k = (K) key;
Comparator<? super K> cpr = comparator;
if (cpr != null) {
Entry<K,V> p = root;
while (p != null) {
int cmp = cpr.compare(k, p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
}
return null;
}
五.存数据
//返回被新节点覆盖的节点的值,不存在被覆盖的节点返回null
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
// TBD:
// 5045147: (coll) Adding null to an empty TreeSet should
// throw NullPointerException
//
// compare(key, key); // type check
//第一次插入节点
root = new Entry<K,V>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
//用指定的Comparator
if (cpr != null) {
//以根节点当前节点t开始搜索,拿被添加的节点的值和当前节点的值比较。
do {
//刚开始parent=t
parent = t;
cmp = cpr.compare(key, t.key);
//如果被添加的节点的值更小,则以当前节点的左子节点作为新的当前节点,此时t=pL
if (cmp < 0)
t = t.left;
//如果被添加的节点的值更大,则以当前节点的右子节点作为新的当前节点,此时t=pR
else if (cmp > 0)
t = t.right;
//如果相等,直接覆盖
else
return t.setValue(value);
} while (t != null); //直到新的当前节点为空
}
else {
//put操作key不能为空
if (key == null)
throw new NullPointerException();
//用key作为Comparator,下同
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
//生成一个新节点,父亲为parent
Entry<K,V> e = new Entry<K,V>(key, value, parent);
//根据最后一次比较的cmp确定pL位置存放e还是pR存放e
if (cmp < 0)
parent.left = e;
else
parent.right = e;
//修复红黑树
fixAfterInsertion(e);
size++;
modCount++;
//插入一个新节点时返回null
return null;
}
六.删数据
public V remove(Object key) {
//先找到节点,getEntry(key)key不能为空,所以remove方法key不能为空
Entry<K,V> p = getEntry(key);
if (p == null)
return null;
//保留一个节点的值
V oldValue = p.value;
//删除节点
deleteEntry(p);
return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
//若被删除节点 p 的左、右子树均非空
if (p.left != null && p.right != null) {
//得到p节点的中序后继s
Entry<K,V> s = successor (p);
//用s替代p
p.key = s.key;
p.value = s.value;
p = s;
}
//如果p节点的左节点存在,replacement代表左节点,否则代表右节点
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {
replacement.parent = p.parent;
// 如果 p 没有父节点,则 replacemment 变成父节点
if (p.parent == null)
root = replacement;
// 如果 p 节点是其父节点的左子节点
else if (p == p.parent.left)
p.parent.left = replacement;
// 如果 p 节点是其父节点的右子节点
else
p.parent.right = replacement;
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
// 修复红黑树
fixAfterDeletion(replacement);
// 如果 p 节点没有父节点
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
// 修复红黑树
fixAfterDeletion(p);
if (p.parent != null) {
// 如果 p 是其父节点的左子节点
if (p == p.parent.left)
p.parent.left = null;
// 如果 p 是其父节点的右子节点
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}
七.containsKey containsValue方法
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
//按中序遍历节点的顺序,把节点和指定value比较
public boolean containsValue(Object value) {
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
if (valEquals(value, e.value))
return true;
return false;
}
static final class Entry<K,V> implements Map.Entry<K,V> {
//找到最小的节点
final Entry<K,V> getFirstEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
}
//找到最大的节点
final Entry<K,V> getLastEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.right != null)
p = p.right;
return p;
}
}
//找到指定节点的后继节点
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
return null;
//如果t有右子数
else if (t.right != null) {
Entry<K,V> p = t.right;
//tRL不为空,tRL就是t的直接后继;tRLL不为空,tRLL就是t的直接后继......
while (p.left != null)
p = p.left;
return p;
//如果t只有左子数
} else {
//如果t=pL,直接返回p
//如果t=pR,返回p.parent
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}
//找到指定节点的前驱节点
static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
if (t == null)
return null;
//如果t有左子数
else if (t.left != null) {
Entry<K,V> p = t.left;
//tLR不为空,tLR就是t的直接后继;tLRR不为空,tLRR就是t的直接后继......
while (p.right != null)
p = p.right;
return p;
} else {
//如果t=pR,直接返回p
//如果t=pL,返回p.parent
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.left) {
ch = p;
p = p.parent;
}
return p;
}
}
八.fixAfterInsertion方法
// 插入节点后修复红黑树
private void fixAfterInsertion(Entry<K,V> x)
{
x.color = RED;
// 直到 x 节点的父节点不是根,且 x 的父节点不是红色
while (x != null && x != root
&& x.parent.color == RED)
{
// 如果 x 的父节点是其父节点的左子节点
if (parentOf(x) == leftOf(parentOf(parentOf(x))))
{
// 获取 x 的父节点的兄弟节点
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
// 如果 x 的父节点的兄弟节点是红色
if (colorOf(y) == RED)
{
// 将 x 的父节点设为黑色
setColor(parentOf(x), BLACK);
// 将 x 的父节点的兄弟节点设为黑色
setColor(y, BLACK);
// 将 x 的父节点的父节点设为红色
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
}
// 如果 x 的父节点的兄弟节点是黑色
else
{
// 如果 x 是其父节点的右子节点
if (x == rightOf(parentOf(x)))
{
// 将 x 的父节点设为 x
x = parentOf(x);
rotateLeft(x);
}
// 把 x 的父节点设为黑色
setColor(parentOf(x), BLACK);
// 把 x 的父节点的父节点设为红色
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
}
// 如果 x 的父节点是其父节点的右子节点
else
{
// 获取 x 的父节点的兄弟节点
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
// 如果 x 的父节点的兄弟节点是红色
if (colorOf(y) == RED)
{
// 将 x 的父节点设为黑色。
setColor(parentOf(x), BLACK);
// 将 x 的父节点的兄弟节点设为黑色
setColor(y, BLACK);
// 将 x 的父节点的父节点设为红色
setColor(parentOf(parentOf(x)), RED);
// 将 x 设为 x 的父节点的节点
x = parentOf(parentOf(x));
}
// 如果 x 的父节点的兄弟节点是黑色
else
{
// 如果 x 是其父节点的左子节点
if (x == leftOf(parentOf(x)))
{
// 将 x 的父节点设为 x
x = parentOf(x);
rotateRight(x);
}
// 把 x 的父节点设为黑色
setColor(parentOf(x), BLACK);
// 把 x 的父节点的父节点设为红色
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
// 将根节点设为黑色
root.color = BLACK;
}
九.fixAfterDeletion方法
// 删除节点后修复红黑树
private void fixAfterDeletion(Entry<K,V> x)
{
// 直到 x 不是根节点,且 x 的颜色是黑色
while (x != root && colorOf(x) == BLACK)
{
// 如果 x 是其父节点的左子节点
if (x == leftOf(parentOf(x)))
{
// 获取 x 节点的兄弟节点
Entry<K,V> sib = rightOf(parentOf(x));
// 如果 sib 节点是红色
if (colorOf(sib) == RED)
{
// 将 sib 节点设为黑色
setColor(sib, BLACK);
// 将 x 的父节点设为红色
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));
// 再次将 sib 设为 x 的父节点的右子节点
sib = rightOf(parentOf(x));
}
// 如果 sib 的两个子节点都是黑色
if (colorOf(leftOf(sib)) == BLACK
&& colorOf(rightOf(sib)) == BLACK)
{
// 将 sib 设为红色
setColor(sib, RED);
// 让 x 等于 x 的父节点
x = parentOf(x);
}
else
{
// 如果 sib 的只有右子节点是黑色
if (colorOf(rightOf(sib)) == BLACK)
{
// 将 sib 的左子节点也设为黑色
setColor(leftOf(sib), BLACK);
// 将 sib 设为红色
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
// 设置 sib 的颜色与 x 的父节点的颜色相同
setColor(sib, colorOf(parentOf(x)));
// 将 x 的父节点设为黑色
setColor(parentOf(x), BLACK);
// 将 sib 的右子节点设为黑色
setColor(rightOf(sib), BLACK);
rotateLeft(parentOf(x));
x = root;
}
}
// 如果 x 是其父节点的右子节点
else
{
// 获取 x 节点的兄弟节点
Entry<K,V> sib = leftOf(parentOf(x));
// 如果 sib 的颜色是红色
if (colorOf(sib) == RED)
{
// 将 sib 的颜色设为黑色
setColor(sib, BLACK);
// 将 sib 的父节点设为红色
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
}
// 如果 sib 的两个子节点都是黑色
if (colorOf(rightOf(sib)) == BLACK
&& colorOf(leftOf(sib)) == BLACK)
{
// 将 sib 设为红色
setColor(sib, RED);
// 让 x 等于 x 的父节点
x = parentOf(x);
}
else
{
// 如果 sib 只有左子节点是黑色
if (colorOf(leftOf(sib)) == BLACK)
{
// 将 sib 的右子节点也设为黑色
setColor(rightOf(sib), BLACK);
// 将 sib 设为红色
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
// 将 sib 的颜色设为与 x 的父节点颜色相同
setColor(sib, colorOf(parentOf(x)));
// 将 x 的父节点设为黑色
setColor(parentOf(x), BLACK);
// 将 sib 的左子节点设为黑色
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
}
setColor(x, BLACK);
}
十.迭代
/**
* Base class for TreeMap Iterators
*/
abstract class PrivateEntryIterator<T> implements Iterator<T> {
Entry<K,V> next;
Entry<K,V> lastReturned;
int expectedModCount;
PrivateEntryIterator(Entry<K,V> first) {
expectedModCount = modCount;
lastReturned = null;
next = first;
}
//后继迭代
final Entry<K,V> nextEntry() {
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
}
//前驱迭代
final Entry<K,V> prevEntry() {
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
}
}