容器学习五:TreeMap源码分析

一.TreeMap成员变量

    //Comparator比较器接口,接口里面只有两个方法int compare(T o1, T o2);boolean equals(Object obj);
    private final Comparator<? super K> comparator;

    //根节点
    private transient Entry<K,V> root = null;

    private transient int size = 0;
    private transient int modCount = 0;
 

二.TreeMap的Entry对象

static final class Entry<K,V> implements Map.Entry<K,V> {
    	//构成树的三个属性left,left,parent
    	K key;
        V value;
        Entry<K,V> left = null;
        Entry<K,V> right = null;
        Entry<K,V> parent;
        boolean color = BLACK;    //该节点红色还是黑色
    }
 

三.构造函数

    //默认构造函数时comparator为空,则插入到TreeMap里面的key必须实现Comparator接口
    public TreeMap() {
        comparator = null;
    }

    //用户指定Comparator
    public TreeMap(Comparator<? super K> comparator) {
        this.comparator = comparator;
    }
 

四.取数据

    public V get(Object key) {
        Entry<K,V> p = getEntry(key);
        return (p==null ? null : p.value);
    }
    
    final Entry<K,V> getEntry(Object key) {
        //如果用户指定了Comparable,用指定的
        if (comparator != null)
            return getEntryUsingComparator(key);
        //get操作key不能为空
        if (key == null)
            throw new NullPointerException();
    //如果用户没指定Comparable,用key作为Comparable
	Comparable<? super K> k = (Comparable<? super K>) key;
        Entry<K,V> p = root;
        //以根节点当前节点开始遍历搜索
        while (p != null) {
        	//拿被检索的节点的值和当前节点的值比较
            int cmp = k.compareTo(p.key);
            //如果被检索的节点的值更小,则以当前节点的左子节点作为新的当前节点。
            if (cmp < 0)
                p = p.left;
            //如果被检索的节点的值更大,则以当前节点的右子节点作为新的当前节点。
            else if (cmp > 0)
                p = p.right;
            //被检索的节点的值和当前节点的值相等,则是我们需要的节点
            else
                return p;
        }
        //找不到返回null
        return null;
    }
    
    //和上面逻辑一样
    final Entry<K,V> getEntryUsingComparator(Object key) {
    	K k = (K) key;
            Comparator<? super K> cpr = comparator;
            if (cpr != null) {
                Entry<K,V> p = root;
                while (p != null) {
                    int cmp = cpr.compare(k, p.key);
                    if (cmp < 0)
                        p = p.left;
                    else if (cmp > 0)
                        p = p.right;
                    else
                        return p;
                }
            }
            return null;
        }
 

五.存数据

//返回被新节点覆盖的节点的值,不存在被覆盖的节点返回null
    public V put(K key, V value) {
        Entry<K,V> t = root;
        if (t == null) {
	    // TBD:
	    // 5045147: (coll) Adding null to an empty TreeSet should
	    // throw NullPointerException
	    //
	    // compare(key, key); // type check
        	//第一次插入节点
            root = new Entry<K,V>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry<K,V> parent;
        // split comparator and comparable paths
        Comparator<? super K> cpr = comparator;
        //用指定的Comparator
        if (cpr != null) {
        	//以根节点当前节点t开始搜索,拿被添加的节点的值和当前节点的值比较。
            do {
            	//刚开始parent=t
                parent = t;
                cmp = cpr.compare(key, t.key);
                //如果被添加的节点的值更小,则以当前节点的左子节点作为新的当前节点,此时t=pL
                if (cmp < 0)
                    t = t.left;
                //如果被添加的节点的值更大,则以当前节点的右子节点作为新的当前节点,此时t=pR
                else if (cmp > 0)
                    t = t.right;
                //如果相等,直接覆盖
                else
                    return t.setValue(value);
            } while (t != null); //直到新的当前节点为空
        }
        else {
        	//put操作key不能为空
            if (key == null)
                throw new NullPointerException();
            //用key作为Comparator,下同
            Comparable<? super K> k = (Comparable<? super K>) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        //生成一个新节点,父亲为parent
        Entry<K,V> e = new Entry<K,V>(key, value, parent);
        //根据最后一次比较的cmp确定pL位置存放e还是pR存放e
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        //修复红黑树
        fixAfterInsertion(e);
        size++;
        modCount++;
        //插入一个新节点时返回null
        return null;
    }

 

六.删数据

    public V remove(Object key) {
    	//先找到节点,getEntry(key)key不能为空,所以remove方法key不能为空
        Entry<K,V> p = getEntry(key);
        if (p == null)
            return null;

        //保留一个节点的值
        V oldValue = p.value;
        //删除节点
        deleteEntry(p);
        return oldValue;
    }
    
    private void deleteEntry(Entry<K,V> p) {
        modCount++;
        size--;

        //若被删除节点 p 的左、右子树均非空
        if (p.left != null && p.right != null) {
        	//得到p节点的中序后继s
            Entry<K,V> s = successor (p);
            //用s替代p
            p.key = s.key;
            p.value = s.value;
            p = s;
        } 

        //如果p节点的左节点存在,replacement代表左节点,否则代表右节点
        Entry<K,V> replacement = (p.left != null ? p.left : p.right);

        if (replacement != null) {
        	replacement.parent = p.parent;
        	// 如果 p 没有父节点,则 replacemment 变成父节点
            if (p.parent == null)
                root = replacement;
            // 如果 p 节点是其父节点的左子节点
            else if (p == p.parent.left)
                p.parent.left  = replacement;
            // 如果 p 节点是其父节点的右子节点
            else
                p.parent.right = replacement;

            p.left = p.right = p.parent = null;

            // Fix replacement
            if (p.color == BLACK)
            	 // 修复红黑树
                fixAfterDeletion(replacement);
         // 如果 p 节点没有父节点
        } else if (p.parent == null) { // return if we are the only node.
            root = null;
        } else { //  No children. Use self as phantom replacement and unlink.
            if (p.color == BLACK)
            	// 修复红黑树
                fixAfterDeletion(p);

            if (p.parent != null) {
            	// 如果 p 是其父节点的左子节点
                if (p == p.parent.left)
                    p.parent.left = null;
                // 如果 p 是其父节点的右子节点
                else if (p == p.parent.right)
                    p.parent.right = null;
                p.parent = null;
            }
        }
    }
 

七.containsKey containsValue方法

public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    //按中序遍历节点的顺序,把节点和指定value比较
    public boolean containsValue(Object value) {
        for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
            if (valEquals(value, e.value))
                return true;
        return false;
    }


static final class Entry<K,V> implements Map.Entry<K,V> {
    //找到最小的节点
    final Entry<K,V> getFirstEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.left != null)
                p = p.left;
        return p;
    }

    //找到最大的节点
    final Entry<K,V> getLastEntry() {
        Entry<K,V> p = root;
        if (p != null)
            while (p.right != null)
                p = p.right;
        return p;
    }
}
 //找到指定节点的后继节点
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
        if (t == null)
            return null;
        //如果t有右子数
        else if (t.right != null) {
            Entry<K,V> p = t.right;
            //tRL不为空,tRL就是t的直接后继;tRLL不为空,tRLL就是t的直接后继......
            while (p.left != null)
                p = p.left;
            return p;
        //如果t只有左子数
        } else {
        	//如果t=pL,直接返回p
        	//如果t=pR,返回p.parent
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            while (p != null && ch == p.right) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
}

//找到指定节点的前驱节点
static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
        if (t == null)
            return null;
        //如果t有左子数
        else if (t.left != null) {
            Entry<K,V> p = t.left;
            //tLR不为空,tLR就是t的直接后继;tLRR不为空,tLRR就是t的直接后继......
            while (p.right != null)
                p = p.right;
            return p;
        } else {
        	//如果t=pR,直接返回p
        	//如果t=pL,返回p.parent
            Entry<K,V> p = t.parent;
            Entry<K,V> ch = t;
            while (p != null && ch == p.left) {
                ch = p;
                p = p.parent;
            }
            return p;
        }
}
 

八.fixAfterInsertion方法

    // 插入节点后修复红黑树
  private void fixAfterInsertion(Entry<K,V> x)
  {
   x.color = RED;
   // 直到 x 节点的父节点不是根,且 x 的父节点不是红色
   while (x != null && x != root
     && x.parent.color == RED)
   {
     // 如果 x 的父节点是其父节点的左子节点
     if (parentOf(x) == leftOf(parentOf(parentOf(x))))
     {
       // 获取 x 的父节点的兄弟节点
       Entry<K,V> y = rightOf(parentOf(parentOf(x)));
       // 如果 x 的父节点的兄弟节点是红色
       if (colorOf(y) == RED)
       {
         // 将 x 的父节点设为黑色
         setColor(parentOf(x), BLACK);
         // 将 x 的父节点的兄弟节点设为黑色
         setColor(y, BLACK);
         // 将 x 的父节点的父节点设为红色
         setColor(parentOf(parentOf(x)), RED);
         x = parentOf(parentOf(x));
       }
       // 如果 x 的父节点的兄弟节点是黑色
       else
       {
         // 如果 x 是其父节点的右子节点
         if (x == rightOf(parentOf(x)))
         {
           // 将 x 的父节点设为 x
           x = parentOf(x);
           rotateLeft(x);
         }
         // 把 x 的父节点设为黑色
         setColor(parentOf(x), BLACK);
         // 把 x 的父节点的父节点设为红色
         setColor(parentOf(parentOf(x)), RED);
         rotateRight(parentOf(parentOf(x)));
       }
     }
     // 如果 x 的父节点是其父节点的右子节点
     else
     {
       // 获取 x 的父节点的兄弟节点
       Entry<K,V> y = leftOf(parentOf(parentOf(x)));
       // 如果 x 的父节点的兄弟节点是红色
       if (colorOf(y) == RED)
       {
         // 将 x 的父节点设为黑色。
         setColor(parentOf(x), BLACK);
         // 将 x 的父节点的兄弟节点设为黑色
         setColor(y, BLACK);
         // 将 x 的父节点的父节点设为红色
         setColor(parentOf(parentOf(x)), RED);
         // 将 x 设为 x 的父节点的节点
         x = parentOf(parentOf(x));
       }
       // 如果 x 的父节点的兄弟节点是黑色
       else
       {
         // 如果 x 是其父节点的左子节点
         if (x == leftOf(parentOf(x)))
         {
           // 将 x 的父节点设为 x
           x = parentOf(x);
           rotateRight(x);
         }
         // 把 x 的父节点设为黑色
         setColor(parentOf(x), BLACK);
         // 把 x 的父节点的父节点设为红色
         setColor(parentOf(parentOf(x)), RED);
         rotateLeft(parentOf(parentOf(x)));
       }
     }
   }
   // 将根节点设为黑色
   root.color = BLACK;
  }
 

 

九.fixAfterDeletion方法

    // 删除节点后修复红黑树
  private void fixAfterDeletion(Entry<K,V> x)
  {
   // 直到 x 不是根节点,且 x 的颜色是黑色
   while (x != root && colorOf(x) == BLACK)
   {
     // 如果 x 是其父节点的左子节点
     if (x == leftOf(parentOf(x)))
     {
       // 获取 x 节点的兄弟节点
       Entry<K,V> sib = rightOf(parentOf(x));
       // 如果 sib 节点是红色
       if (colorOf(sib) == RED)
       {
         // 将 sib 节点设为黑色
         setColor(sib, BLACK);
         // 将 x 的父节点设为红色
         setColor(parentOf(x), RED);
         rotateLeft(parentOf(x));
         // 再次将 sib 设为 x 的父节点的右子节点
         sib = rightOf(parentOf(x));
       }
       // 如果 sib 的两个子节点都是黑色
       if (colorOf(leftOf(sib)) == BLACK
         && colorOf(rightOf(sib)) == BLACK)
       {
         // 将 sib 设为红色
         setColor(sib, RED);
         // 让 x 等于 x 的父节点
         x = parentOf(x);
       }
       else
       {
         // 如果 sib 的只有右子节点是黑色
         if (colorOf(rightOf(sib)) == BLACK)
         {
           // 将 sib 的左子节点也设为黑色
           setColor(leftOf(sib), BLACK);
           // 将 sib 设为红色
           setColor(sib, RED);
           rotateRight(sib);
           sib = rightOf(parentOf(x));
         }
         // 设置 sib 的颜色与 x 的父节点的颜色相同
         setColor(sib, colorOf(parentOf(x)));
         // 将 x 的父节点设为黑色
         setColor(parentOf(x), BLACK);
         // 将 sib 的右子节点设为黑色
         setColor(rightOf(sib), BLACK);
         rotateLeft(parentOf(x));
         x = root;
       }
     }
     // 如果 x 是其父节点的右子节点
     else
     {
       // 获取 x 节点的兄弟节点
       Entry<K,V> sib = leftOf(parentOf(x));
       // 如果 sib 的颜色是红色
       if (colorOf(sib) == RED)
       {
         // 将 sib 的颜色设为黑色
         setColor(sib, BLACK);
         // 将 sib 的父节点设为红色
         setColor(parentOf(x), RED);
         rotateRight(parentOf(x));
         sib = leftOf(parentOf(x));
       }
       // 如果 sib 的两个子节点都是黑色
       if (colorOf(rightOf(sib)) == BLACK
         && colorOf(leftOf(sib)) == BLACK)
       {
         // 将 sib 设为红色
         setColor(sib, RED);
         // 让 x 等于 x 的父节点
         x = parentOf(x);
       }
       else
       {
         // 如果 sib 只有左子节点是黑色
         if (colorOf(leftOf(sib)) == BLACK)
         {
           // 将 sib 的右子节点也设为黑色
           setColor(rightOf(sib), BLACK);
           // 将 sib 设为红色
           setColor(sib, RED);
           rotateLeft(sib);
           sib = leftOf(parentOf(x));
         }
         // 将 sib 的颜色设为与 x 的父节点颜色相同
         setColor(sib, colorOf(parentOf(x)));
         // 将 x 的父节点设为黑色
         setColor(parentOf(x), BLACK);
         // 将 sib 的左子节点设为黑色
         setColor(leftOf(sib), BLACK);
         rotateRight(parentOf(x));
         x = root;
       }
     }
   }
   setColor(x, BLACK);
  }
 

十.迭代

/**
     * Base class for TreeMap Iterators
     */
    abstract class PrivateEntryIterator<T> implements Iterator<T> {
        Entry<K,V> next;
        Entry<K,V> lastReturned;
        int expectedModCount;

        PrivateEntryIterator(Entry<K,V> first) {
            expectedModCount = modCount;
            lastReturned = null;
            next = first;
        }
        //后继迭代
	final Entry<K,V> nextEntry() {
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            next = successor(e);
            lastReturned = e;
            return e;
        }

        //前驱迭代
        final Entry<K,V> prevEntry() {
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            next = predecessor(e);
            lastReturned = e;
            return e;
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值