LeetCode-461. Hamming Distance

本文介绍如何计算两个整数之间的汉明距离,并提供了两种C++实现方法。通过位运算技巧高效解决问题,同时探讨了提高程序效率的技巧。

Description

The Hamming distance between two integers is the number of positions at which the corresponding bits 
are different.

Given two integers x and y, calculate the Hamming distance.

Note

0 ≤ x, y < 2^31.

Example

Input: x = 1, y = 4

Output: 2

Explanation:
1   (0 0 0 1)
4   (0 1 0 0)
       ↑   ↑

The above arrows point to positions where the corresponding bits are different.

Solution 1(C++)

class Solution {
public:
    int hammingDistance(int x, int y) {
        int nx = x^y, cnt=0;
        while(nx != 0){
            if(nx%2==1) cnt++;
            nx /= 2;
        }
        return cnt;
    }
};

Solution 2(C++)

static int x = []() { std::ios::sync_with_stdio(false); cin.tie(NULL); return 0; }();
class Solution {
public:
    int hammingDistance(int x, int y) {
        int n = x ^ y;
        int count = 0;
        while(n){
            count++;
            n = n & (n-1);
        }
        return count;
    }
};

算法分析

解法一自己写的,7ms耗时,解法二是我看提交结果中耗时最短的。经过前两道题: LeetCode-455. Assign Cookies LeetCode-155. Min Stack。发现这三者最快的解法第一句都是:

static int x = []() { std::ios::sync_with_stdio(false); cin.tie(NULL); return 0; }();

这就不得不想一想了,这一句不管什么情况,都能加,于是我也加了,结果,7ms耗时减少2~3ms。哇,这就很皮了。

根据网上的分析,其实这个就是加速程序读取数据的时间,从而达到缩短程序运行时间的目的。

程序分析

关于这个static int x = []() { std::ios::sync_with_stdio(false); cin.tie(NULL); return 0; }(); 骚操作的解释网上也有很详尽的解释。其实原理简单来说,就是C++为了兼容C语言的输出格式,使用cin,cout等函数会降低输入输出速度,但是可以通过这些语句取消C++对C的兼容,从而提高效率。

用C++里面的cin读取数据,我们都知道它的速度相对于C里面的scanf是比较慢的

sync_with_stdio
这个函数是一个“是否兼容stdio”的开关,C++为了兼容C,保证程序在使用了std::printf和std::cout的时候不发生混乱,将输出流绑到了一起。可以在IO之前将stdio解除绑定,这样做了之后要注意不要同时混用cout和printf 之类。

tie
tie是将两个stream绑定的函数,空参数的话返回当前的输出流指针。可以通过tie(0)(0表示NULL)来解除cin与cout的绑定,进一步加快执行效率。

优秀的博客资料可以参考:ios::sync_with_stdio(false);(读入优化)C++ 里利用 std::ios::sync_with_stdio(false) 解决TLE问题
关于ios::sync_with_stdio(false);和 cin.tie(0)加速c++输入输出流

总之,目前可以认为这是一中一定程度上可以缩短程序运行时间的万能钥匙。

基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问题的研究与实现,重点利用Matlab进行算法编程和仿真。p-Hub选址是物流与交通网络中的关键问题,旨在通过确定最优的枢纽节点位置和非枢纽节点的分配方式,最小化网络总成本。文章详细阐述了粒子群算法的基本原理及其在解决组合优化问题中的适应性改进,结合p-Hub中转网络的特点构建数学模型,并通过Matlab代码实现算法流程,包括初始化、适应度计算、粒子更新与收敛判断等环节。同时可能涉及对算法参数设置、收敛性能及不同规模案例的仿真结果分析,以验证方法的有效性和鲁棒性。; 适合人群:具备一定Matlab编程基础和优化算法理论知识的高校研究生、科研人员及从事物流网络规划、交通系统设计等相关领域的工程技术人员。; 使用场景及目标:①解决物流、航空、通信等网络中的枢纽选址与路径优化问题;②学习并掌握粒子群算法在复杂组合优化问题中的建模与实现方法;③为相关科研项目或实际工程应用提供算法支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现逻辑,重点关注目标函数建模、粒子编码方式及约束处理策略,并尝试调整参数或拓展模型以加深对算法性能的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值