菜鸟Octopus
码龄12年
关注
提问 私信
  • 博客:570,410
    社区:4
    570,414
    总访问量
  • 123
    原创
  • 69,169
    排名
  • 2,454
    粉丝
  • 18
    铁粉

个人简介:某生鲜领域供应链算法

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2013-01-10
博客简介:

zy345293721的博客

查看详细资料
  • 原力等级
    当前等级
    3
    当前总分
    370
    当月
    6
个人成就
  • 人工智能领域新星创作者
  • 获得837次点赞
  • 内容获得60次评论
  • 获得1,069次收藏
  • 代码片获得4,107次分享
创作历程
  • 16篇
    2024年
  • 9篇
    2023年
  • 3篇
    2021年
  • 8篇
    2020年
  • 43篇
    2019年
  • 44篇
    2018年
成就勋章
TA的专栏
  • pandas
    3篇
  • pytorch
    10篇
  • LightGBM
    4篇
  • 机器学习
    7篇
  • mysql
    4篇
  • Spark On Hive调优
    3篇
  • pyspark专栏
    5篇
  • tensorflow
    6篇
  • 分布式系统基础
    8篇
  • java基础
    30篇
  • Redis原理
    6篇
  • python
    4篇
兴趣领域 设置
  • Java
    java
  • 数据结构与算法
    数据结构
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

6-3.使用GPU训练模型

文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。深度学习的训练过程常常非常耗时,一个模型训练几个小时是家常便饭,训练几天也是常有的事情,有时候甚至要训练几十天。训练过程的耗时主要来自于两个部分,一部分来自数据准备,另一部分来自参数迭代。
原创
发布博客 2024.07.14 ·
1038 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

5-4.TensorBoard可视化

Pytorch中利用TensorBoard可视化的大概过程如下:首先在Pytorch中指定一个目录创建一个torch.utils.tensorboard.SummaryWriter日志写入器。然后根据需要可视化的信息,利用日志写入器将相应信息日志写入我们指定的目录。最后就可以传入日志目录作为参数启动TensorBoard,然后就可以在TensorBoard中愉快地看片了。我们主要介绍Pytorch中利用TensorBoard进行如下方面信息的可视化的方法。
原创
发布博客 2024.07.11 ·
1070 阅读 ·
9 点赞 ·
0 评论 ·
12 收藏

5-3.损失函数

自定义损失函数接收两个张量y_pred,y_true作为输入参数,并输出一个标量作为损失函数值。也可以对nn.Module进行子类化,重写forward方法实现损失的计算逻辑,从而得到损失函数的类的实现。下面演示两个比较著名的范例。下面是一个Focal Loss的自定义实现示范。Focal Loss是一种对binary_crossentropy的改进损失函数形式。它在样本不均衡和存在较多易分类的样本时相比binary_crossentropy具有明显的优势。
原创
发布博客 2024.07.10 ·
1149 阅读 ·
30 点赞 ·
0 评论 ·
12 收藏

5-2.模型层

如果Pytorch的内置模型层不能够满足需求,我们也可以通过继承nn.Module基类构建自定义的模型层。实际上,pytorch不区分模型和模型层,都是通过继承nn.Module进行构建。因此,我们只要继承nn.Module基类并实现forward方法即可自定义模型层。下面是Pytorch的nn.Linear层的源码,我们可以仿照它来自定义模型层。
原创
发布博客 2024.07.10 ·
769 阅读 ·
24 点赞 ·
0 评论 ·
21 收藏

5-1.Dataset和DataLoader

下面我们通过另外一种方式,即继承 torch.utils.data.Dataset 创建自定义数据集的方式来对 cifar2构建 数据管道。
原创
发布博客 2024.07.09 ·
1122 阅读 ·
23 点赞 ·
0 评论 ·
11 收藏

4-3.nn.functional和nn.Module

文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。
原创
发布博客 2024.07.09 ·
875 阅读 ·
8 点赞 ·
0 评论 ·
6 收藏

4-2.张量的数学运算

文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。
原创
发布博客 2024.07.08 ·
1043 阅读 ·
26 点赞 ·
0 评论 ·
29 收藏

2-3.动态计算图

Pytorch的计算图由节点和边组成,节点表示张量或者Function,边表示张量和Function之间的依赖关系。Pytorch中的计算图是动态图。这里的动态主要有两重含义。第一层含义是:计算图的正向传播是立即执行的。无需等待完整的计算图创建完毕,每条语句都会在计算图中动态添加节点和边,并立即执行正向传播得到计算结果。第二层含义是:计算图在反向传播后立即销毁。下次调用需要重新构建计算图。
原创
发布博客 2024.07.02 ·
933 阅读 ·
27 点赞 ·
0 评论 ·
30 收藏

1-4.时间序列数据建模流程范例

使用Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器进行封装。此处选择第二种方式构建模型。# 3层lstmreturn yprint(net)Net(
原创
发布博客 2024.07.01 ·
1253 阅读 ·
14 点赞 ·
0 评论 ·
29 收藏

1-1.结构化数据建模流程范例

使用Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器进行封装。此处选择使用最简单的nn.Sequential,按层顺序模型。
原创
发布博客 2024.06.30 ·
1054 阅读 ·
24 点赞 ·
0 评论 ·
10 收藏

XGboost详解

文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。XGBoost(eXtreme Gradient Boosting)是一个高效的机器学习库,也是一种基于梯度提升决策树(Gradient Boosting Decision Tree)的集成学习算法,专为提升树算法的性能和速度而设计。
原创
发布博客 2024.06.28 ·
583 阅读 ·
25 点赞 ·
0 评论 ·
9 收藏

CatBoost原理介绍

文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。
原创
发布博客 2024.06.28 ·
939 阅读 ·
12 点赞 ·
0 评论 ·
15 收藏

LightGBM算法与XGboost对比

论文地址:《LightGBM: A Highly Efficient Gradient Boosting Decision Tree》:https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf。
原创
发布博客 2024.06.27 ·
1633 阅读 ·
30 点赞 ·
0 评论 ·
17 收藏

为什么LightGBM如此之快

文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。
原创
发布博客 2024.05.30 ·
772 阅读 ·
24 点赞 ·
0 评论 ·
21 收藏

DataFrame—数据汇总8

我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。
原创
发布博客 2024.05.27 ·
889 阅读 ·
14 点赞 ·
0 评论 ·
12 收藏

DataFrame—数据汇总4

我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。
原创
发布博客 2024.05.24 ·
866 阅读 ·
9 点赞 ·
0 评论 ·
14 收藏

pokemon-datq.csv数据

发布资源 2024.05.22 ·
csv

xgboost时间序列预测资源

发布资源 2023.10.29 ·
zip

LightGBM 的完整解释 - 最快的梯度提升模型

在寻找最佳特征值来分割树节点时,LightGBM使用特征值直方图,并尝试所有直方图bin值,而不是尝试所有可能的特征值,因此可以减少寻找最佳特征吐出值的时间和计算量。例如,给定下面的年龄特征,将直方图离散特征值放入不同的范围箱中,因此我们可以使用像Age⩽30,Age⩽40,,,,Age⩽100这样的吐槽标准,而不是尝试像Age这样的所有可能的年龄值⩽31、年龄⩽32 等。一般来说,GOSS的主要思想是,在训练下一个集成树之前,我们保留梯度较大的训练实例,并丢弃一些梯度较小的训练实例。
原创
发布博客 2023.10.29 ·
6011 阅读 ·
4 点赞 ·
0 评论 ·
11 收藏

神经网络工具用法,数据在另外一个文档中

发布资源 2023.10.26 ·
ipynb
加载更多