RoseVorchid

7年一辈子

机器学习实战-之SVM核函数与案例

在现实任务中,原始样本空间中可能不存在这样可以将样本正确分为两类的超平面,但是我们知道如果原始空间的维数是有限的,也就是说属性数是有限的,则一定存在一个高维特征空间能够将样本划分。

2017-12-02 16:41:54

阅读数:242

评论数:0

机器学习之SVM原理与案例

支持向量机SVM(Support vector machine)是一种二值分类器方法,其基本是思想是:找到一个能够将两类分开的线性可分的直线(或者超平面)。实际上有许多条直线(或超平面)可以将两类目标分开来,我们要找的其实是这些直线(或超平面)中分割两类目标时,有最大距离的直线(或超平面)。我们称...

2017-12-02 16:15:25

阅读数:139

评论数:0

机器学习--线性回归(原理与例子)

机器学习,线性回归原理,TensorFlow例子

2017-10-22 13:12:12

阅读数:182

评论数:0

机器学习(7)--VC维数

90年代初,Vapnik and A. Chervonenkis提出了支持向量机(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。 结合上次所说的,我们可以得到如下式子: Ein(g)与Eout(g)之差足够小,即大于一...

2017-03-29 14:41:20

阅读数:326

评论数:0

机器学习(6)--化无限为有限(二)

在“机器学习(5)-化无限为有限”这篇文章中,我们得到了下面的规律: 可以用一个有限的和假设集相关的量mH来替换不可求得M,所以式子 的左边也是一个有限的数,且很大几率是小于1的值,所以Eout(g)是可以很接近Ein(g)的。上限函数(Bounding Function) 上限...

2017-03-29 14:36:33

阅读数:269

评论数:0

机器学习(5)--化无限为有限

在上一篇文章中根据坏的样本和坏的数据的表格中得到如下推论: 对于所有的M(假设的个数),N(数据集规模)和阈值,Hoeffding Inequality都是有效的, 我们不必要知道Eout,可以通过Ein来代替Eout(这句话的意思是Ein(g)=Eout(g) is PAC)。 由上篇文章...

2017-03-29 14:24:40

阅读数:233

评论数:0

机器学习--Hoeffding Inequality--界定概率边界

问题假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity。实际情况中,最有可能限制学习器成功的因素是训练数据的有限性。在使用学习器的过程中,我们希望得到与训练数据拟合程度高的假设(hypothesis)。(在前面...

2016-12-10 16:57:40

阅读数:1106

评论数:0

Tensorflow安装与测试

Tensorflow 机器学习

2016-12-10 16:49:42

阅读数:14893

评论数:0

机器学习(2)--感知机

案例银行办信用卡–获得感知机我们到银行办信用卡时,银行并不是直接就给你办卡的,而是会根据你的一些个人信息、消费信息、个人信誉等指标综合考虑后,才会决定是否给你办卡(不像现在银行办信用卡有点随意)。银行要考虑的指标比如age,salary,year in job,current debt等我们称为特...

2016-12-10 16:42:57

阅读数:239

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭