Tensorflow安装与测试

标签: Tensorflow 机器学习
11534人阅读 评论(0) 收藏 举报
分类:

安装、

Ubuntu/Linux 64-bit

$ sudo apt-get install python-pip python-dev

Ubuntu/Linux 64-bit, CPU only, Python 2.7

$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.12.0rc0-cp27-none-linux_x86_64.whl

Python 2

$  sudo pip install --upgrade $TF_BINARY_URL

Python 3

$ sudo pip3 install --upgrade $TF_BINARY_URL

测试一、

$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
>>>

测试二、

import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random

learning_rate = 0.01
training_epochs = 1000
display_step = 50
#数据集x
train_X = numpy.asarray([3.3,4.4,5.5,7.997,5.654,.71,6.93,4.168,9.779,6.182,7.59,2.167,
                         7.042,10.791,5.313,9.27,3.1])
#数据集y
train_Y = numpy.asarray([1.7,2.76,3.366,2.596,2.53,1.221,1.694,1.573,3.465,1.65,2.09,
                         2.827,3.19,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
X = tf.placeholder("float")
Y = tf.placeholder("float")

W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")

pred = tf.add(tf.mul(X, W), b)

cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

init = tf.initialize_all_variables()
with tf.Session() as sess:
    sess.run(init)

    # 训练数据
    for epoch in range(training_epochs):
        for (x, y) in zip(train_X, train_Y):
            sess.run(optimizer, feed_dict={X: x, Y: y})

    print "优化完成!"
    training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
    print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'

    #可视化显示
    plt.plot(train_X, train_Y, 'ro', label='Original data')
    plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    plt.legend()
    plt.show()

测试二效果:
这里写图片描述

更多技术干货请关注:
这里写图片描述

查看评论

TensorFlow MNIST 测试

TensorFlow MNIST 测试昨天在安装好了TensorFlow后,迫不及待来了一次MNIST测试,结果各种爆炸,一开始上不了官网,科学上网以后也过不去,后来找了墙内的下载,结果跑起来还是有错...
  • iSerendipity
  • iSerendipity
  • 2017-03-15 17:02:27
  • 5420

TensorFlow——训练自己的数据(四)模型测试

测试一张图片获取一张图片函数:def get_one_image(train): 输入参数:train,训练图片的路径 返回参数:image,从训练图片中随机抽取一张图片 n = len(train)...
  • xinyu3307
  • xinyu3307
  • 2017-07-12 12:25:25
  • 6233

TensorFlow的安装及测试第一程序

第一步:安装pip $ sudo apt-get install python-pip python-dev build-essential  $ sudo pip install --upgra...
  • ZHE123ZHE123ZHE123
  • ZHE123ZHE123ZHE123
  • 2016-12-29 19:18:25
  • 11147

TensorFlow测试程序

import tensorflow as tf import numpy as np x_data = np.float32(np.random.rand(2, 100)) y_data = np.d...
  • sinat_35257860
  • sinat_35257860
  • 2017-05-25 19:07:56
  • 974

Tensorflow-SSD测试及训练自己的数据集

一、软件 Python + Tensorflow + OpenCV3二、安装测试 1、ssd_notebook.ipynb测试 (1)下载程序包并解压。 源代码GitHub: balanca...
  • ei1990
  • ei1990
  • 2017-07-18 10:56:18
  • 6040

tensorflow 保存模型预测测试集分类结果

Mnist分类模型—保存训练模型并参与预测测试集这篇文档开始讲解利用mnist语料集做的例子来熟悉保存训练模型的参数用来做预测,首先会出贴出保存模型的案例代码,然后会贴出预测的代码。...
  • randompeople
  • randompeople
  • 2017-07-20 17:08:13
  • 3774

tensorflow mnist测试

tensorflow mnist测试
  • u012526003
  • u012526003
  • 2017-03-07 22:24:14
  • 665

TensorFlow教程03:针对机器学习初学者的MNIST实验——回归的实现、训练和模型评估

实现回归模型 为了用python实现高效的数值计算,我们通常会使用函数库,比如NumPy,会把类似矩阵乘法这样的复杂运算使用其他外部语言实现。不幸的是,从外部计算切换回Python的每一个操作,仍...
  • wang_junjie
  • wang_junjie
  • 2016-05-04 19:16:43
  • 12503

动动手,用TensorFlow API训练出自己的目标检测模型

TensorFlow内包含了一个强大的物体检测API,我们可以利用这API来训练自己的数据集实现特殊的目标检测。 Dat Tran就分享了自己实现可爱的浣熊检测器的经历,在文章中作者把检测器的训...
  • c2a2o2
  • c2a2o2
  • 2017-11-03 16:12:18
  • 6017

Tensorflow学习笔记:用minst数据集训练卷积神经网络并用训练后的模型测试自己的BMP图片

(1)mnist_test_conv.py代码如下 #! /usr/bin/env python2 # -*- coding: utf-8 -*- ''' 构造一个卷积神经网络来训练mnist: 输...
  • u010312436
  • u010312436
  • 2017-11-23 17:25:44
  • 1913
    个人资料
    持之以恒
    等级:
    访问量: 4万+
    积分: 911
    排名: 5万+
    最新评论