栏目介绍: “论文快讯”栏目旨在精简地分享一周内发表在高水平期刊上的Metasurface领域研究成果,帮助读者及时了解领域前沿动态,如果对专栏的写法或内容有什么建议欢迎留言,后续会陆续开启其他专栏,敬请期待。
-
-
论文基本信息
-
标题: Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films
作者:
Waqas W. Ahmed (KAUST, 计算机、电气与数学科学与工程系);
Haicheng Cao (KAUST, 计算机、电气与数学科学与工程系);
Changqing Xu (KAUST, 计算机、电气与数学科学与工程系);
Mohamed Farhat (KAUST, 计算机、电气与数学科学与工程系);
Muhammad Amin (Taibah University, 工程学院);
Xiaohang Li (KAUST, 计算机、电气与数学科学与工程系);
通讯作者: Xiangliang Zhang (KAUST, 计算机、电气与数学科学与工程系);
通讯作者: Ying Wu (KAUST, 计算机、电气与数学科学与工程系)发表时间: 2025年3月20日(其中2024年11月4日返修,2024年12月16日接收)
发表期刊: Light: Science & Applications(JCR-Q1,IF=20.6)
-
-
-
论文快览:
-
解决的问题:
在高效光吸收材料设计中,超薄硅膜由于厚度受限导致的宽带吸收效率低下成为关键挑战。传统设计方法在优化宽带吸收时难以兼顾结构复杂性和制造工艺限制,尤其在超薄膜领域存在显著性能提升瓶颈。提出的方法:
本文结合机器学习与等离子体光学,提出了一种基于机器学习辅助设计的等离子体超表面屏(metascreen)优化策略。通过机器学习模型快速预测设计参数对光学性能的影响,将设计空间限制在高效吸收区域内,从而显著提升设计效率。具体地,采用超薄硅膜集成金属纳米结构,通过调控纳米结构形状和尺寸实现对入射光的宽频率范围吸收。同时,提出了基于深度学习的优化框架,有效解决了传统方法中计算开销大的问题。实现的效果:
实验表明,所设计的超表面在400–1200 nm波长范围内的平均吸收率达到94.5%,最高可达98.2%,显著优于传统设计。此外,该结构厚度仅为硅波长的1/50,展示出超薄设计在宽带吸收中的潜力。结合机器学习,优化时间缩短约40%。创新性分析:
本文创新点主要体现在算法创新与硬件设计创新的结合。一方面,利用机器学习方法突破了传统全局优化中高计算复杂度的限制,为超表面设计提供了高效的优化框架;另一方面,基于等离子体超表面的硬件设计通过集成纳米结构实现了极薄硅膜的宽带高吸收,显著提升了光吸收效率并降低了制造复杂性。该方法为超薄光电器件设计提供了新思路。
-
论文重要图文:
-
**摘要:**我们提出并展示了一种数据驱动的等离子超表面屏,它能够在超薄硅膜中高效地吸收宽光谱范围内的入射光。通过在20纳米厚的非晶硅(a-Si)层中嵌入双纳米环银阵列,我们显著增强了光吸收。这种增强源于共振腔模式与局域等离子体模式的相互作用,需要精确调整等离子体共振以匹配硅活性层的吸收区域。为促进器件设计并在不增加活性层厚度的情况下改善光吸收,我们开发了一个深度学习框架,该框架能够学习从吸收光谱到设计空间的映射。这种逆向设计策略有助于针对选择性光谱功能进行吸收调谐。我们的优化设计比裸硅平面器件的性能提升了超过100%。实验验证了所提配置在宽带光吸收上的增强效果。所提出的超表面吸收器在光能采集应用中具有巨大潜力,可用于提升超薄硅太阳能电池、光电探测器和光学滤波器的光转换效率。
-
结论:
我们的研究展示了一种通过在设计过程中利用机器学习增强超薄硅膜宽带吸收的方法。所提出的等离子超表面吸收器结合了二维周期性等离子纳米环阵列,其吸收能力归因于腔体共振吸收与a-Si活性区域中银纳米环结构的近场增强。通过精确调整纳米环的几何参数及间隔介质层的厚度,我们能够控制超薄硅层中的吸收增强。借助深度学习方法,我们设计了RPN和DPN,并观察到吸收器性能的显著改善:相比于不含等离子纳米结构的参考结构,吸收器实现了超过100%的光电流提升。我们的研究不仅提供了等离子超表面吸收器设计与优化的见解,还展示了深度学习技术在提升此类器件性能方面的有效性。尽管数据驱动方法在数据生成方面需要较高的一次性成本,但与传统方法(如COMSOL内置方法)相比,该方法能够更高效、更精确地探索高维设计空间。在本研究中,我们选择了对称性高且规则的纳米环作为纳米结构以展示我们的方法。需要指出的是,尽管不规则结构可能会引入更多自由度并在优化吸收特性方面提供潜在优势,但这也可能在实验实现中带来更大的挑战。尽管如此,精确控制和定制吸收器光学特性的能力为光电子学的进步提供了巨大前景,铺平了高效可定制光谱选择性吸收器开发的道路。
-
重要图片:
图1 使用机器学习辅助的超表面吸收器实现增强的宽带吸收
a 提议的超表面吸收器的结构示意图,包括嵌入在厚度为20纳米的a-Si活性层中的四个同心银纳米环(顶部),中间为SiO2介质间隔层,底部为作为背面反射器的银镜。结构被入射光覆盖,光谱区域为太阳光谱S(λ),如下方所示。右上角的插图显示了银纳米环图案的正面视图。
b 提议的RPN可以根据超表面吸收器的参数预测吸收光谱,反向的DPN可以根据给定的吸收光谱预测超表面吸收器的设计参数。蓝色和粉色圆圈分别代表设计和响应空间。
c 超表面吸收器的20纳米硅层的宽带吸收光谱。
图2 提议的RPN用于光谱响应映射的设计空间
a RPN的示意图。
b RPN训练过程中训练损失和验证损失的下降趋势。
c 在测试数据集上应用训练好的RPN时相对光谱误差的统计分布,其中红色虚线表示平均误差。
d 预测吸收光谱的代表性示例,其中实线蓝色曲线为目标值,虚线红色曲线为RPN预测结果。对应的设计参数在SI中提供。
图3 提议的DPN根据给定的超表面吸收器吸收光谱预测设计参数
a DPN的示意图。
b DPN训练过程中训练损失和验证损失的下降趋势。
c 归一化设计空间的回归图,黑色实线表示最佳拟合,绿色点显示预测的参数。回归系数验证了训练网络的有效性,见(i)–(vi)。
图4 根据超表面吸收器给定吸收光谱反向预测设计参数
a–f 实线显示从COMSOL计算得出的目标光谱,虚线显示从DPN设计参数中通过RPN预测的光谱。DPN设计参数在SI中提供。
图5 设计的超表面吸收器的多器件性能分析
a 电流密度和电流增强绘制于测试数据上,不同颜色显示间隔层厚度如何影响电流增强。
b 测试数据中不同间隔层厚度下增强电流的统计分布,表明由于纳米结构的存在,增强范围在60–180%之间。
c 增强宽带吸收的代表性示例,实线蓝色为从COMSOL计算的光谱,虚线红色为从RPN预测的光谱,黑色实线为无金属环的参考结构的吸收。
(i) J = 14.25 mA cm−2,Jenh = 100%,D = [29.44, 84.63, 110.41, 165.13, 13.83, 39.96] nm。
(ii) J = 13.68 mA cm−2,Jenh = 123%,D = [35.45, 89.7, 120.32, 165.09, 11.98, 49.54] nm。
图6 设计的超表面吸收器的多器件统计分析
a 测试数据集中不同间隔层和b双环纳米结构厚度的吸收器效率的统计分布。蓝点表示对应平面器件的效率。结果表明,通过优化设计参数,吸收器效率超过50%。
图7 所研究结构的示意图和反射光谱
a 包含银纳米环阵列的参考和超表面吸收器的示意图。每层的厚度已标注。
b 参考和超表面吸收器的模拟和实验反射光谱。
图8 银纳米环阵列的形貌
a 放大倍数分别为×16,000、×50,000和×700,000的银纳米环阵列SEM显微照片。
b 3D AFM图像显示了清晰的银纳米环阵列。
参考文献:
- Ahmed, W.W., Cao, H., Xu, C. et al. Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films. Light Sci Appl 14, 42 (2025).
DOI:https://doi.org/10.1038/s41377-024-01723-8
免责声明:
本公众号专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。