HMM学习最佳范例一:介绍

20 篇文章 0 订阅

  隐马尔科夫模型(HMM)依然是读者访问“我爱自然语言处理”的一个热门相关关键词,我曾在《HMM学习最佳范例与崔晓源的博客》中介绍过国外的一个不错的HMM学习教程,并且国内崔晓源师兄有一个相应的翻译版本,不过这个版本比较简化和粗略,有些地方只是概况性的翻译了一下,省去了一些内容,所以从今天开始计划在52nlp上系统的重新翻译这个学习教程,希望对大家有点用。

一、介绍(Introduction)
  我们通常都习惯寻找一个事物在一段时间里的变化模式(规律)。这些模式发生在很多领域,比如计算机中的指令序列,句子中的词语顺序和口语单词中的音素序列等等,事实上任何领域中的一系列事件都有可能产生有用的模式。
  考虑一个简单的例子,有人试图通过一片海藻推断天气——民间传说告诉我们‘湿透的’海藻意味着潮湿阴雨,而‘干燥的’海藻则意味着阳光灿烂。如果它处于一个中间状态(‘有湿气’),我们就无法确定天气如何。然而,天气的状态并没有受限于海藻的状态,所以我们可以在观察的基础上预测天气是雨天或晴天的可能性。另一个有用的线索是前一天的天气状态(或者,至少是它的可能状态)——通过综合昨天的天气及相应观察到的海藻状态,我们有可能更好的预测今天的天气。
  这是本教程中我们将考虑的一个典型的系统类型。
  首先,我们将介绍产生概率模式的系统,如晴天及雨天间的天气波动。
  然后,我们将会看到这样一个系统,我们希望预测的状态并不是观察到的——其底层系统是隐藏的。在上面的例子中,观察到的序列将是海藻而隐藏的系统将是实际的天气。
  最后,我们会利用已经建立的模型解决一些实际的问题。对于上述例子,我们想知道:
  1. 给出一个星期每天的海藻观察状态,之后的天气将会是什么?
  2. 给定一个海藻的观察状态序列,预测一下此时是冬季还是夏季?直观地,如果一段时间内海藻都是干燥的,那么这段时间很可能是夏季,反之,如果一段时间内海藻都是潮湿的,那么这段时间可能是冬季。

未完待续:生成模式

本文翻译自:http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html
部分翻译参考:隐马尔科夫模型HMM自学

转载请注明出处“我爱自然语言处理”:www.52nlp.cn

本文链接地址:http://www.52nlp.cn/hmm-learn-best-practices-one-introduction

以下是维特比算法的C语言实现: ``` #include <stdio.h> #include <stdlib.h> #define N 3 // 状态数 #define M 4 // 观测符号数 int main() { int i, j, t; int obs_seq[] = {0, 1, 2, 0}; // 观测序列 double a[N][N] = {{0.5, 0.2, 0.3}, {0.3, 0.5, 0.2}, {0.2, 0.3, 0.5}}; // 转移概率矩阵 double b[N][M] = {{0.5, 0.5, 0.0, 0.0}, {0.0, 0.5, 0.5, 0.0}, {0.0, 0.0, 0.5, 0.5}}; // 发射概率矩阵 double pi[N] = {0.2, 0.4, 0.4}; // 初始状态概率 double delta[M][N]; // delta矩阵 int psi[M][N]; // psi矩阵 int q[M]; // 最优状态序列 // 初始化 for (i = 0; i < N; i++) { delta[0][i] = pi[i] * b[i][obs_seq[0]]; psi[0][i] = 0; } // 递推 for (t = 1; t < M; t++) { for (j = 0; j < N; j++) { double max_delta = 0.0; int max_i = 0; for (i = 0; i < N; i++) { double tmp_delta = delta[t - 1][i] * a[i][j] * b[j][obs_seq[t]]; if (tmp_delta > max_delta) { max_delta = tmp_delta; max_i = i; } } delta[t][j] = max_delta; psi[t][j] = max_i; } } // 终止 double max_delta = 0.0; int max_i = 0; for (i = 0; i < N; i++) { if (delta[M - 1][i] > max_delta) { max_delta = delta[M - 1][i]; max_i = i; } } // 回溯 q[M - 1] = max_i; for (t = M - 2; t >= 0; t--) { q[t] = psi[t + 1][q[t + 1]]; } // 输出结果 printf("最优状态序列为:"); for (t = 0; t < M; t++) { printf("%d ", q[t]); } printf("\n"); return 0; } ``` 其,`a`数组为转移概率矩阵,`b`数组为发射概率矩阵,`pi`数组为初始状态概率,`obs_seq`数组为观测序列。程序使用了`delta`和`psi`两个矩阵来辅助计算。最终,程序输出最优状态序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值