yofer张耀琦的专栏

数学之法,世界之道

[深度学习]网络结构,权重初始化,激活函数,fine-tune

导语: 直接查看一个神经网络的结构; 如何初始化权重,改进准确度; 在Keras上建立现行模型; 激活函数的作用; 如何fine-tune一个预训练的Vgg16网络,来分类猫和狗 七行代码体验深度学习的发现 Epochs 一个eposh就是一遍完整数据集的过程。 运行多个e...

2018-03-05 10:11:44

阅读数:754

评论数:0

[深度学习]七行代码体验深度学习的神奇

简介 这是深度学习系列的第一节,这个课程是为了让深度学习更能为大众接受,为了那些在机器学习和数学方面没有很深厚背景的同学设计。我们强烈相信深度学习将在很多领域产生变革;比如,这个课程的对象是有计算机编程背景的同学以及想在他们专业领域引用这些技术的人。 这节课的最后,我们将理解如何仅用七行代码写...

2018-01-15 15:28:19

阅读数:911

评论数:0

OpenGL4.3新特性: 计算着色器 Compute Shader

计算着色器是一个完全用于计算任意信息的 着色器阶段(Stage) 。虽然它可以渲染,但它通常用于与绘制三角形和像素无关的任务。概述计算着色器与其他着色器阶段的操作不同。 所有其他着色器阶段都有一组明确的输入值,一些是内置的,一些是用户定义的。 着色器阶段执行的频率由该阶段的性质指定; 例如顶点着色...

2017-09-20 16:29:41

阅读数:590

评论数:2

Jupyter Notebook教程 in Python

主要内容:如何安装,运行和使用IPython进行交互式 matplotlib 绘图,数据分析,还有发布代码。

2017-09-11 15:29:38

阅读数:2066

评论数:0

机器学习入门系列06,Logistic Regression逻辑回归

逻辑回归和线性回归的对比;交叉熵的应用;判别方法(逻辑回归)和生成方法(用高斯描述后验概率);Softmax推导(常规推导和最大熵推导);特征转换引入神经网络

2017-04-10 09:09:36

阅读数:2032

评论数:0

机器学习入门系列05,Classification: Probabilistic Generative Model(分类:概率生成模型)

分类模型;先验概率;高斯分布的应用;最大似然估计的方法;推导后验概率等

2017-04-04 22:18:58

阅读数:2878

评论数:0

机器学习入门系列04,Gradient Descent(梯度下降法)

什么是梯度下降法?学习速率的引入;如何调整学习速率;Adagrad算法介绍;用泰勒展开式对梯度下降法进行数学理论支持

2017-03-27 00:35:45

阅读数:21357

评论数:3

机器学习入门系列03,Error的来源:偏差和方差(bias 和 variance)

讨论error的两个来源:偏差和方差。估测偏差和方差。对比说明偏差和方差对真正error的影响。不同的error原因有不同的处理方式。

2017-03-27 00:08:28

阅读数:1620

评论数:0

机器学习入门系列02,Regression 回归:案例研究

介绍机器学习的回归模型,举例介绍了操作步骤,损失函数的求解,结果的分析。

2017-03-26 23:27:08

阅读数:4531

评论数:7

机器学习入门系列01,Introduction 简介

简要介绍机器学习研究的内容,机器学习的三大步骤;不同的Model类型举例

2017-03-26 19:18:00

阅读数:2879

评论数:1

提示
确定要删除当前文章?
取消 删除