resnet18_deploy

ResNet_18_deploy.prototxt

name: "ResNet-18"



layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 10 dim: 3 dim: 224 dim: 224 } }
}


layer {
    bottom: "data"
    top: "conv1"
    name: "conv1"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 7
        pad: 3
        stride: 2
        
        bias_term: false


    }
}


layer {
    bottom: "conv1"
    top: "conv1"
    name: "bn_conv1"
    type: "BatchNorm"
    
}


layer {
    bottom: "conv1"
    top: "conv1"
    name: "scale_conv1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "conv1"
    top: "conv1"
    name: "conv1_relu"
    type: "ReLU"
}


layer {
    bottom: "conv1"
    top: "pool1"
    name: "pool1"
    type: "Pooling"
    pooling_param {
        kernel_size: 3
        stride: 2
        pool: MAX
    }
}


layer {
    bottom: "pool1"
    top: "res2a_branch1"
    name: "res2a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 1
        pad: 0
        stride: 1
      
        bias_term: false


    }
}


layer {
    bottom: "res2a_branch1"
    top: "res2a_branch1"
    name: "bn2a_branch1"
    type: "BatchNorm"
    
}


layer {
    bottom: "res2a_branch1"
    top: "res2a_branch1"
    name: "scale2a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "pool1"
    top: "res2a_branch2a"
    name: "res2a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "bn2a_branch2a"
    type: "BatchNorm"
    
}


layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "scale2a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2a"
    name: "res2a_branch2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res2a_branch2a"
    top: "res2a_branch2b"
    name: "res2a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "bn2a_branch2b"
    type: "BatchNorm"
    
}


layer {
    bottom: "res2a_branch2b"
    top: "res2a_branch2b"
    name: "scale2a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res2a_branch1"
    bottom: "res2a_branch2b"
    top: "res2a"
    name: "res2a"
    type: "Eltwise"
    eltwise_param {
        operation: SUM
    }
}


layer {
    bottom: "res2a"
    top: "res2a"
    name: "res2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res2a"
    top: "res2b_branch2a"
    name: "res2b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
    
        bias_term: false


    }
}


layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "bn2b_branch2a"
    type: "BatchNorm"
    
}


layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "scale2b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2a"
    name: "res2b_branch2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res2b_branch2a"
    top: "res2b_branch2b"
    name: "res2b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 64
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "bn2b_branch2b"
    type: "BatchNorm"
    
}


layer {
    bottom: "res2b_branch2b"
    top: "res2b_branch2b"
    name: "scale2b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res2a"
    bottom: "res2b_branch2b"
    top: "res2b"
    name: "res2b"
    type: "Eltwise"
    eltwise_param {
        operation: SUM
    }
}


layer {
    bottom: "res2b"
    top: "res2b"
    name: "res2b_relu"
    type: "ReLU"
}


layer {
    bottom: "res2b"
    top: "res3a_branch1"
    name: "res3a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 1
        pad: 0
        stride: 2
        
        bias_term: false


    }
}


layer {
    bottom: "res3a_branch1"
    top: "res3a_branch1"
    name: "bn3a_branch1"
    type: "BatchNorm"
    
}


layer {
    bottom: "res3a_branch1"
    top: "res3a_branch1"
    name: "scale3a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res2b"
    top: "res3a_branch2a"
    name: "res3a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 2
        
        bias_term: false


    }
}


layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "bn3a_branch2a"
    type: "BatchNorm"
    
}


layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "scale3a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2a"
    name: "res3a_branch2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res3a_branch2a"
    top: "res3a_branch2b"
    name: "res3a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
       
        bias_term: false


    }
}


layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "bn3a_branch2b"
    type: "BatchNorm"
    
}


layer {
    bottom: "res3a_branch2b"
    top: "res3a_branch2b"
    name: "scale3a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res3a_branch1"
    bottom: "res3a_branch2b"
    top: "res3a"
    name: "res3a"
    type: "Eltwise"
    eltwise_param {
        operation: SUM
    }
}


layer {
    bottom: "res3a"
    top: "res3a"
    name: "res3a_relu"
    type: "ReLU"
}


layer {
    bottom: "res3a"
    top: "res3b_branch2a"
    name: "res3b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "bn3b_branch2a"
    type: "BatchNorm"
    
}


layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "scale3b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2a"
    name: "res3b_branch2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res3b_branch2a"
    top: "res3b_branch2b"
    name: "res3b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 128
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "bn3b_branch2b"
    type: "BatchNorm"
    
}


layer {
    bottom: "res3b_branch2b"
    top: "res3b_branch2b"
    name: "scale3b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res3a"
    bottom: "res3b_branch2b"
    top: "res3b"
    name: "res3b"
    type: "Eltwise"
    eltwise_param {
        operation: SUM
    }
}


layer {
    bottom: "res3b"
    top: "res3b"
    name: "res3b_relu"
    type: "ReLU"
}


layer {
    bottom: "res3b"
    top: "res4a_branch1"
    name: "res4a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 1
        pad: 0
        stride: 2
        
        bias_term: false


    }
}


layer {
    bottom: "res4a_branch1"
    top: "res4a_branch1"
    name: "bn4a_branch1"
    type: "BatchNorm"
    
}


layer {
    bottom: "res4a_branch1"
    top: "res4a_branch1"
    name: "scale4a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res3b"
    top: "res4a_branch2a"
    name: "res4a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 2
        
        bias_term: false


    }
}


layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "bn4a_branch2a"
    type: "BatchNorm"
    
}


layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "scale4a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2a"
    name: "res4a_branch2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res4a_branch2a"
    top: "res4a_branch2b"
    name: "res4a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "bn4a_branch2b"
    type: "BatchNorm"
    
}


layer {
    bottom: "res4a_branch2b"
    top: "res4a_branch2b"
    name: "scale4a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res4a_branch1"
    bottom: "res4a_branch2b"
    top: "res4a"
    name: "res4a"
    type: "Eltwise"
    eltwise_param {
        operation: SUM
    }
}


layer {
    bottom: "res4a"
    top: "res4a"
    name: "res4a_relu"
    type: "ReLU"
}


layer {
    bottom: "res4a"
    top: "res4b_branch2a"
    name: "res4b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "bn4b_branch2a"
    type: "BatchNorm"
    
}


layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "scale4b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2a"
    name: "res4b_branch2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res4b_branch2a"
    top: "res4b_branch2b"
    name: "res4b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 256
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "bn4b_branch2b"
    type: "BatchNorm"
    
}


layer {
    bottom: "res4b_branch2b"
    top: "res4b_branch2b"
    name: "scale4b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res4a"
    bottom: "res4b_branch2b"
    top: "res4b"
    name: "res4b"
    type: "Eltwise"
    eltwise_param {
        operation: SUM
    }
}


layer {
    bottom: "res4b"
    top: "res4b"
    name: "res4b_relu"
    type: "ReLU"
}


layer {
    bottom: "res4b"
    top: "res5a_branch1"
    name: "res5a_branch1"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 1
        pad: 0
        stride: 2
       
        bias_term: false


    }
}


layer {
    bottom: "res5a_branch1"
    top: "res5a_branch1"
    name: "bn5a_branch1"
    type: "BatchNorm"
    
}


layer {
    bottom: "res5a_branch1"
    top: "res5a_branch1"
    name: "scale5a_branch1"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res4b"
    top: "res5a_branch2a"
    name: "res5a_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 2
        
        bias_term: false


    }
}


layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "bn5a_branch2a"
    type: "BatchNorm"
    
}


layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "scale5a_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2a"
    name: "res5a_branch2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res5a_branch2a"
    top: "res5a_branch2b"
    name: "res5a_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "bn5a_branch2b"
    type: "BatchNorm"
    
}


layer {
    bottom: "res5a_branch2b"
    top: "res5a_branch2b"
    name: "scale5a_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res5a_branch1"
    bottom: "res5a_branch2b"
    top: "res5a"
    name: "res5a"
    type: "Eltwise"
    eltwise_param {
        operation: SUM
    }
}


layer {
    bottom: "res5a"
    top: "res5a"
    name: "res5a_relu"
    type: "ReLU"
}


layer {
    bottom: "res5a"
    top: "res5b_branch2a"
    name: "res5b_branch2a"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "bn5b_branch2a"
    type: "BatchNorm"
    
}


layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "scale5b_branch2a"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2a"
    name: "res5b_branch2a_relu"
    type: "ReLU"
}


layer {
    bottom: "res5b_branch2a"
    top: "res5b_branch2b"
    name: "res5b_branch2b"
    type: "Convolution"
    convolution_param {
        num_output: 512
        kernel_size: 3
        pad: 1
        stride: 1
        
        bias_term: false


    }
}


layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "bn5b_branch2b"
    type: "BatchNorm"
    
}


layer {
    bottom: "res5b_branch2b"
    top: "res5b_branch2b"
    name: "scale5b_branch2b"
    type: "Scale"
    scale_param {
        bias_term: true
    }
}


layer {
    bottom: "res5a"
    bottom: "res5b_branch2b"
    top: "res5b"
    name: "res5b"
    type: "Eltwise"
    eltwise_param {
        operation: SUM
    }
}


layer {
    bottom: "res5b"
    top: "res5b"
    name: "res5b_relu"
    type: "ReLU"
}


layer {
    bottom: "res5b"
    top: "pool5"
    name: "pool5"
    type: "Pooling"
    pooling_param {
        kernel_size: 7
        stride: 1
        pool: AVE
    }
}


layer {
    bottom: "pool5"
    top: "fc1000"
    name: "fc1000"
    type: "InnerProduct"
    param {
        lr_mult: 1
        decay_mult: 1
    }
    param {
        lr_mult: 2
        decay_mult: 1
    }
    inner_product_param {
        num_output: 3
        
       
    }
}


layer {
  name: "prob"
  type: "Softmax"
  bottom: "fc1000"
  top: "prob"

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值