codeforces Round #272(div2) C解题报告

C. Dreamoon and Sums
time limit per test
1.5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occasionally. He wants to calculate the sum of all nice integers. Positive integer x is called nice if  and , where k is some integer number in range[1, a].

By  we denote the quotient of integer division of x and y. By  we denote the remainder of integer division of x and y. You can read more about these operations here: http://goo.gl/AcsXhT.

The answer may be large, so please print its remainder modulo 1 000 000 007 (109 + 7). Can you compute it faster than Dreamoon?

Input

The single line of the input contains two integers ab (1 ≤ a, b ≤ 107).

Output

Print a single integer representing the answer modulo 1 000 000 007 (109 + 7).

Sample test(s)
input
1 1
output
0
input
2 2
output
8
Note

For the first sample, there are no nice integers because  is always zero.

For the second sample, the set of nice integers is {3, 5}.

题目大意:

给出a和b,求出符合以下条件的数字"X"的和:

设m为x/b的商,n为x/b的余。

m/n=k, 1 <= k <= a;

解法:

由题意可得:

x= m*b+n; m=kn;  =>  x=k*n*b+n= n*(k*b+1);  其中 0 <= n < b, 1 <= k <= a;

sum x = [b*(b-1)/2] * (k*b+1) = [b*(b-1)/2] * [a*(a+1)/2+a];

代码:

#include <iostream>

using namespace std;

#define LL long long
#define modn 1000000007

LL ans;
LL a, b;

int main() {
	cin >> a >> b;

/*	LL tmp1 = (a*(a+1)/2)%modn;
	tmp1 = (tmp1*b+a)%modn;
	LL tmp2 = (b*(b-1)/2)%modn;
	ans = (tmp1*tmp2)%modn;
*/
	for (LL i = 1; i <= a; i++) {
		LL tmp1=(b*i+1)%modn;
		LL tmp2=(b*(b-1)/2)%modn;

		ans = (ans+tmp1*tmp2)%modn;
	}

	cout << ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值