146. LRU缓存机制

题目:

146. LRU缓存机制
在这里插入图片描述
在这里插入图片描述

题解:

1. 题解一:使用LinkedHashMap实现

在这里插入图片描述

2. 题解二:使用双向链表结构+HashMap实现

0. 解题思路:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1. 解释一:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 解释二:(主要思路)

在这里插入图片描述

/* 缓存容量为 2 */
LRUCache cache = new LRUCache(2);
// 你可以把 cache 理解成一个队列
// 假设左边是队头,右边是队尾
// 最近使用的排在队头,久未使用的排在队尾
// 圆括号表示键值对 (key, val)

cache.put(1, 1);
// cache = [(1, 1)]
cache.put(2, 2);
// cache = [(2, 2), (1, 1)]
cache.get(1);       // 返回 1
// cache = [(1, 1), (2, 2)]
// 解释:因为最近访问了键 1,所以提前至队头
// 返回键 1 对应的值 1
cache.put(3, 3);
// cache = [(3, 3), (1, 1)]
// 解释:缓存容量已满,需要删除内容空出位置
// 优先删除久未使用的数据,也就是队尾的数据
// 然后把新的数据插入队头
cache.get(2);       // 返回 -1 (未找到)
// cache = [(3, 3), (1, 1)]
// 解释:cache 中不存在键为 2 的数据
cache.put(1, 4);    
// cache = [(1, 4), (3, 3)]
// 解释:键 1 已存在,把原始值 1 覆盖为 4
// 不要忘了也要将键值对提前到队头

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1. 双链表的节点类:

class Node {
    public int key, val;
    public Node next, prev;
    public Node(int k, int v) {
        this.key = k;
        this.val = v;
    }
}

2. 包含常用 API 的双链表类:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

class DoubleList {  
    private Node head, tail; // 头尾虚节点
    private int size; // 链表元素数

    public DoubleList() {
        head = new Node(0, 0);
        tail = new Node(0, 0);
        head.next = tail;
        tail.prev = head;
        size = 0;
    }

    // 在链表头部添加节点 x
    public void addFirst(Node x) {
        x.next = head.next;
        x.prev = head;
        head.next.prev = x;
        head.next = x;
        size++;
    }

    // 删除链表中的 x 节点(x 一定存在)
    public void remove(Node x) {
        x.prev.next = x.next;
        x.next.prev = x.prev;
        size--;
    }
    
    // 删除链表中最后一个节点,并返回该节点
    public Node removeLast() {
        if (tail.prev == head)
            return null;
        Node last = tail.prev;
        remove(last);
        return last;
    }
    
    // 返回链表长度
    public int size() { return size; }
}

在这里插入图片描述

3. 实现逻辑:

// key 映射到 Node(key, val)
HashMap<Integer, Node> map;
// Node(k1, v1) <-> Node(k2, v2)...
DoubleList cache;

int get(int key) {
    if (key 不存在) {
        return -1;
    } else {        
        将数据 (key, val) 提到开头;
        return val;
    }
}

void put(int key, int val) {
    Node x = new Node(key, val);
    if (key 已存在) {
        把旧的数据删除;
        将新节点 x 插入到开头;
        更新 map 中对应的数据;
    } else {
        if (cache 已满) {
            删除链表的最后一个数据腾位置;
            删除 map 中映射到该数据的键;
        } 
        将新节点 x 插入到开头;
        map 中新建 key 对新节点 x 的映射;
    }
}

在这里插入图片描述


if (cap == cache.size()) {
    // 删除链表最后一个数据
    Node last = cache.removeLast();
    map.remove(last.key);
}

在这里插入图片描述
在这里插入图片描述

代码:

1. 代码一:使用LinkedHashMap实现

// 方法1:使用LinkedHashMap实现
public static class LRUCache extends LinkedHashMap<Integer, Integer>{

    private int capacity;

    public LRUCache(int capacity) {
        // 初始大小,0.75是装载因子,true是表示按照访问时间排序
        super(capacity, 0.75F, true);
        // 传入指定的缓存最大容量
        this.capacity = capacity;
    }
    
    public int get(int key) {
        return super.getOrDefault(key, -1);
    }
    
    public void put(int key, int value) {
        super.put(key, value);
    }

    /**
     * 实现LRU的关键方法,如果map里面的元素个数大于了缓存最大容量,则删除链表的顶端元素
     */        
    @Override
    protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest)
    {
        return size() > capacity;
    }
}

2. 代码二:使用双向链表结构+HashMap实现

import java.util.*;

/**
 * code146
 */
public class code146 {

    // 方法2:使用双向链表结构+HashMap实现
    // 双链表的节点类
    public static class Node {
        public int key, val;
        public Node next, prev;
        public Node(int k, int v)
        {
            this.key = k;
            this.val = v;
        }
    }

    // 包含常用 API 的双链表类
    public static class DoubleList {
        private Node head, tail; // 头尾虚节点
        private int size; // 链表元素数

        public DoubleList()
        {
            head = new Node(0, 0);
            tail = new Node(0, 0);
            head.next = tail;
            tail.prev = head;
            size = 0;
        }

        // 在链表头部添加节点 x
        public void addFirst(Node x)
        {
            x.next = head.next;
            x.prev = head;
            head.next.prev = x;
            head.next = x;
            size++;
        }

        // 删除链表中的 x 节点(x 一定存在)
        public void remove(Node x)
        {
            x.prev.next = x.next;
            x.next.prev = x.prev;
            size--;
        }

        // 删除链表中最后一个节点,并返回该节点
        public Node removeLast()
        {
            if(tail.prev == head)
            {
                return null;
            }
            Node last = tail.prev;
            remove(last);
            return last;
        }

        // 返回链表长度
        public int size()
        {
            return size;
        }
    }

    // 实现逻辑:
    public static class LRUCache {

        // key -> Node(key, val)
        private HashMap<Integer, Node> map;
        // Node(k1, v1) <-> Node(k2, v2)...
        private DoubleList cache;
        // 最大容量
        private int cap;

        public LRUCache(int capacity) {
            this.cap = capacity;
            map = new HashMap<>();
            cache = new DoubleList();
        }
        
        public int get(int key) {
            if(!map.containsKey(key))
            {
                return -1;
            }
            int val = map.get(key).val;
            // 利用 put 方法把该数据 (key, val) 提到开头;
            put(key, val);
            return val;
        }
        
        public void put(int key, int value) {
            // 先把新节点 x 做出来
            Node x = new Node(key, value);
            if(map.containsKey(key))
            {
                // 把旧的数据删除;
                cache.remove(map.get(key));
                // 将新节点 x 插入到开头;
                cache.addFirst(x);
                // 更新 map 中对应的数据;
                map.put(key, x);
            }
            else
            {
                if(cap == cache.size)
                {
                    // 删除链表的最后一个数据腾位置;
                    Node last = cache.removeLast();
                    // 删除 map 中映射到该数据的键;
                    map.remove(last.key);
                }
                // 将新节点 x 插入到开头;
                cache.addFirst(x);
                // map 中新建 key 对新节点 x 的映射;
                map.put(key, x);
            }
        }
    }

    public static void main(String[] args) {
        LRUCache cache = new LRUCache(2);

        cache.put(1, 1);
        cache.put(2, 2);

        int res1 = cache.get(1);
        System.out.println(res1);

        cache.put(3, 3);

        int res2 = cache.get(2);
        System.out.println(res2);

        cache.put(4, 4);

        int res4 = cache.get(1);
        System.out.println(res4);

        int res5 = cache.get(3);
        System.out.println(res5);

        int res6 = cache.get(4);
        System.out.println(res6);
    }
}

参考:

  1. LRU缓存机制
  2. LRU 策略详解和实现
  3. 源于 LinkedHashMap源码
  4. 数据结构分析,Python 哈希 + 双向链表实现(代码注释多)
  5. 哈希表 + 双向链表(Java)
  6. 三种方法带你手撕LRU算法 Java版本
  7. Python的OrderedDict 或者 哈希+双向链表
©️2020 CSDN 皮肤主题: 撸撸猫 设计师: 设计师小姐姐 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值