152. 乘积最大子数组

题目:

152. 乘积最大子数组
在这里插入图片描述

题解:

1. 题解一:双向遍历

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

public int maxProduct(int[] nums) {
    if (nums.length == 0) {
        return 0;
    }
    if (nums.length == 1) {
        return nums[0];
    }
    int max_even = 1;
    boolean flag = false;
    boolean update = false;
    int max = 0;
    int max_odd = 1;
    for (int i = 0; i < nums.length; i++) {
        max_even *= nums[i];
        max = Math.max(max, max_even);
        if (nums[i] == 0) {

            if (update) {
                max = Math.max(max, max_odd);
            }
            max_even = 1;
            max_odd = 1;
            flag = false;
            update = false;
            continue;
        }
        if (flag) {
            max_odd *= nums[i];
            update = true;
            continue;
        }
        if (nums[i] < 0) {
            flag = true;
        }
    }
    if (update) {

        max = Math.max(max, max_odd);
    }
    flag = false;
    update = false;
    max_odd = 1;
    for (int i = nums.length - 1; i >= 0; i--) {
        if (nums[i] == 0) {
            if (update) {
                max = Math.max(max, max_odd);
            }
            max_odd = 1;
            flag = false;
            update = false;
            continue;
        }
        if (flag) {
            max_odd *= nums[i];
            update = true;
            continue;
        }
        if (nums[i] < 0) {
            flag = true;
        }
    }
    if (update) {
        max = Math.max(max, max_odd);
    }

    return max;
}

在这里插入图片描述

public int maxProduct(int[] nums) {
    if (nums.length == 0) {
        return 0;
    }
    int max = 1;
    int res = nums[0];
    //包含了所有数相乘的情况
    //奇数个负数的情况一
    for (int i = 0; i < nums.length; i++) {
        max *= nums[i];
        res = Math.max(res, max);
    }
    max = 1;
    //奇数个负数的情况二
    for (int i = nums.length - 1; i >= 0; i--) {
        max *= nums[i];
        res = Math.max(res, max);
    }

    return res;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 题解二:动态规划

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码:

1. 代码一:双向遍历

public class code152 {

    // 解法一:
    public static int maxProduct(int[] nums) {
        if(nums.length == 0)
        {
            return 0;
        }
        int max = 1;
        int res = nums[0];

        //包含了所有数相乘的情况
        //奇数个负数的情况一
        for(int i = 0; i < nums.length; i++)
        {
            max *= nums[i];
            if(max > res)
            {
                res = max;
            }
            if(nums[i] == 0)
            {
                max = 1;
            }
        }

        max = 1;
        //奇数个负数的情况二
        for(int i = nums.length - 1; i >= 0; i--)
        {
            max *= nums[i];
            if(max > res)
            {
                res = max;
            }
            if(nums[i] == 0)
            {
                max = 1;
            }
        }
        return res;
    }

    public static void main(String[] args) {
        int nums[] = { 2, 3, -2, 4 };
        int res = maxProduct(nums);
        System.out.println(res);
    }
}

2. 代码二:动态规划

public class code152 {

    // 解法2:动态规划
    public static int maxProduct(int[] nums) {
        int n = nums.length;
        if(n == 0)
        {
            return 0;
        }
        int dpMax[] = new int[n];
        dpMax[0] = nums[0];
        int dpMin[] = new int[n];
        dpMin[0] = nums[0];
        int max = nums[0];
        for(int i = 1; i < n; i++)
        {
            dpMax[i] = Math.max(dpMin[i - 1] * nums[i], Math.max(dpMax[i - 1] * nums[i], nums[i]));
            dpMin[i] = Math.min(dpMin[i - 1] * nums[i], Math.min(dpMax[i - 1] * nums[i], nums[i]));
            max = Math.max(max, dpMax[i]);
        }
        return max;
    }    

    public static void main(String[] args) {
        int nums[] = { 2, 3, -2, 4 };
        int res = maxProduct(nums);
        System.out.println(res);
    }
}

参考:

  1. 详细通俗的思路分析,多解法
  2. 子串问题用 DP
  3. 乘积最大子数组
  4. 画解算法:152. 乘积最大子序列
  5. 动态规划(理解无后效性)
  6. DP方法详解
  7. 多种思路求解
  8. 如何将思路一步步过渡到动态规划
©️2020 CSDN 皮肤主题: 点我我会动 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值