商队运输费

package algorithm;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.Set;

/*
 * 
 //https://exercise.acmcoder.com/online/online_judge_ques?ques_id=3071&konwledgeId=139
 //https://segmentfault.com/a/1190000002685939
  
  题目描述:
很久以前,某王国拥有 n 个大城市,为了方便交通,国王下令修建了大量的用于连接首都和其他各大城市高速路。
为节省经费,王国采用了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。并且,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
G商队是王国重要的运输商队,他们奔波于各大城市之间,为王国的人们运输商品,实现长途贸易。所以,从一个城市马不停蹄地到另一个城市成了G商队最常做的事情。他们有一个钱袋,用于存放往来城市间的运输费。
在运输过程中G商队发现,如果不在某个城市停下来休整,在连续行进过程中,他们所花的运输费与他们已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他们花费的运输费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
G商队想知道:他们从某一个城市出发,如果中间不休息,到达另一个城市,所有可能花费的运输费中最多是多少呢?


输入
输入的第一行包含一个整数n,表示包括首都在内的王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述王国的高速路(王国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。输入城市数(〈10),长度(〈=100)

输出
输出一个整数,表示G商队最多花费的运输费是多少。

实例:
样例输入
5
1 2 2
1 3 1
2 4 5
2 5 4

输出:
样例输出
135


 */
 

public class GraphCaravan {


    private ArrayList vertexList;//存储点的链表
    private int[][] edges;//邻接矩阵,用来存储边
    private int numOfEdges;//边的数目
    static int maxResult=0;
    
    public GraphCaravan(int n) {
        //初始化矩阵,一维数组,和边的数目
        edges=new int[n][n];  //边初始化均为0
        vertexList=new ArrayList(n);  //n个边
        numOfEdges=0;
    }
  //得到结点的个数
    public int getNumOfVertex() {
        return vertexList.size();
    }

    //得到边的数目
    public int getNumOfEdges() {
        return numOfEdges;
    }

    //返回结点i的数据
    public Object getValueByIndex(int i) {
        return vertexList.get(i);
    }
    
    //返回v1,v2的权值
    public int getWeight(int v1,int v2) {
        return edges[v1][v2];
    }

    //插入结点
    public void insertVertex(Object vertex) {
        vertexList.add(vertexList.size(),vertex); //add(index,object) 插入对象
    }

    //插入边
    public void insertEdge(int v1,int v2,int weight) {
        edges[v1][v2]=weight;
        numOfEdges++;
    }
    
    //删除边
    public void deleteEdge(int v1,int v2) {
        edges[v1][v2]=0;
        numOfEdges--;
    }
    
    //得到第一个邻接结点的下标
    public int getFirstNeighbor(int index) {
        for(int j=0;j<vertexList.size();j++) {
            if (edges[index][j]>0) {
                return j;
            }
        }
        return -1;
    }

    //根据前一个邻接结点的下标来取得下一个邻接结点
    public int getNextNeighbor(int v1,int v2) {
        for (int j=v2+1;j<vertexList.size();j++) {
            if (edges[v1][j]>0) {
                return j;
            }
        }
        return -1;
    }
    
    
    
    /******************
    //私有函数,深度优先遍历
    private void depthFirstSearch(boolean[] isVisited,int  i) {
        //首先访问该结点,在控制台打印出来
        System.out.print(getValueByIndex(i)+"  ");
        //置该结点为已访问
        isVisited[i]=true;
        
        int w=getFirstNeighbor(i);//
        System.out.println("00="+i+"  "+w);
        while (w!=-1) {
            if (!isVisited[w]) {// 没有被访问
                depthFirstSearch(isVisited,w);
                System.out.println("11="+i+"  "+w);
            }
            w=getNextNeighbor(i, w);
            System.out.println("2="+i+"  "+w);
        }
    }
    
    //对外公开函数,深度优先遍历,与其同名私有函数属于方法重载
    public void depthFirstSearch(boolean[] isVisited) {
        for(int i=0;i<getNumOfVertex();i++) {
            //因为对于非连通图来说,并不是通过一个结点就一定可以遍历所有结点的。
            if (!isVisited[i]) { //如果没有被访问,则下面开始访问
                depthFirstSearch(isVisited,i);
            }
        }
    }
    
    
    
    //得到第一个邻接结点的下标
    public Set<Integer> getMyFirstNeighbor(int index,boolean[] isVisited,Map<Integer,Integer> map) {
        //Map<Integer,Set<Integer>> map=new HashMap<Integer,Set<Integer>>();
        Set<Integer> set=new HashSet<Integer>();
        for(int j=0;j<vertexList.size();j++) {
            
            if (edges[index][j]>0&&isVisited[j]==false) {
                set.add(j);
                map.put(j,index);
            }
        }
       // map.put(index,set)
        return set;
    }
/******************
    //私有函数,深度优先遍历
    public void myDepthFirstSearch(boolean[] isVisited,int  i,Map<Integer,Integer> map) {
        
        
        //首先访问该结点,在控制台打印出来
       // System.out.print(getValueByIndex(i)+"  ");
        //arry.add(getValueByIndex(i));
        //置该结点为已访问
        isVisited[i]=true;
        Set<Integer> set=getMyFirstNeighbor(i,isVisited,map);
        if(set.isEmpty()){//没有值,结束了
            System.out.println("已经没有值了,输出了:--start");
            int now=i;
            int tmp=0;
            while(now!=-1){
                
                int last=map.get(now);
                if(last!=-1){
                    tmp=tmp+edges[last][now];
                }
                System.out.print(getValueByIndex(now)+"->");
                now=last;
                
            }
            //System.out.println("tmp="+tmp);
            if(tmp>maxResult){
                maxResult=tmp;
            }
            
            System.out.println("\n已经没有值了,输出了:--end ,此时最大为:"+maxResult+"\n");
        }
        for(Integer w:set){ //遍历set值
              if (!isVisited[w]){// 没有被访问
                  myDepthFirstSearch(isVisited,w,map);
              }
             // System.out.println("");
              //w=getNextNeighbor(i, w);
        }
   
    }
    public static int cost(int distance){
        return 10*distance+distance*(distance+1)/2;
        
    }
    
    public static void addEdge(String tmp,    GraphCaravan gc){
        String[] ints=tmp.split(" ");
        int v1=Integer.parseInt(ints[0]);
        int v2=Integer.parseInt(ints[1]);
        int v3=Integer.parseInt(ints[2]);
        
        gc.insertEdge(v1-1, v2-1, v3);
        gc.insertEdge(v2-1, v1-1, v3);
    }

    
    public static void main(String[] args) {

        /*
5
1 2 2
1 3 1
2 4 5
2 5 4
        int n=5; //表示节点
        String labels[]={"1a","2b","c3","4d","5e"};//结点的标识
          
        GraphCaravan gc=new GraphCaravan(n);
        
        for(int i=0;i<labels.length;i++){
          // System.out.print("  "+labels[i]);
           gc.insertVertex(labels[i]);
        }
        

        gc.insertEdge(0, 1, 2);
        gc.insertEdge(0,2, 1);
        gc.insertEdge(1,3, 5);
        gc.insertEdge(1,4, 4);
        
        gc.insertEdge(1,0, 2);
        gc.insertEdge(2,0, 1);
        gc.insertEdge(3,1, 5);
        gc.insertEdge(4,1, 4);
        
        */
        
    
        
        java.util.Scanner sc=new java.util.Scanner(System.in);
        int n=Integer.parseInt(sc.nextLine());    
     
          GraphCaravan gc=new GraphCaravan(n);
        for(int i=0;i<n-1;i++){
            String tmp=sc.nextLine();
            addEdge(tmp,gc);
        }

        System.out.println(n);
       
        //String labels[]={"1a","2b","c3","4d","5e"};//结点的标识
          
        
        for(int i=0;i<n;i++){
          // System.out.print("  "+labels[i]);
           gc.insertVertex(i+1);
        }

        
        for(int i=0;i<n;i++){
             System.out.println("深度优先搜索序列为:"+i);
            Map<Integer,Integer> map=new HashMap<Integer,Integer>() ;
            boolean[] isVisited=new boolean[n]; //默认false
            System.out.println("\n");
            //gc.depthFirstSearch(isVisited);
            map.put(i,-1);
            gc.myDepthFirstSearch(isVisited,i,map);
            System.out.println();
            
        }
        System.out.println("最大为:"+maxResult+" 花费为:"+cost(maxResult));
        
    }

}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值