package algorithm;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.Set;
/*
*
//https://exercise.acmcoder.com/online/online_judge_ques?ques_id=3071&konwledgeId=139
//https://segmentfault.com/a/1190000002685939
题目描述:
很久以前,某王国拥有 n 个大城市,为了方便交通,国王下令修建了大量的用于连接首都和其他各大城市高速路。
为节省经费,王国采用了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。并且,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
G商队是王国重要的运输商队,他们奔波于各大城市之间,为王国的人们运输商品,实现长途贸易。所以,从一个城市马不停蹄地到另一个城市成了G商队最常做的事情。他们有一个钱袋,用于存放往来城市间的运输费。
在运输过程中G商队发现,如果不在某个城市停下来休整,在连续行进过程中,他们所花的运输费与他们已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他们花费的运输费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
G商队想知道:他们从某一个城市出发,如果中间不休息,到达另一个城市,所有可能花费的运输费中最多是多少呢?
输入
输入的第一行包含一个整数n,表示包括首都在内的王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述王国的高速路(王国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。输入城市数(〈10),长度(〈=100)
输出
输出一个整数,表示G商队最多花费的运输费是多少。
实例:
样例输入
5
1 2 2
1 3 1
2 4 5
2 5 4
输出:
样例输出
135
*/
public class GraphCaravan {
private ArrayList vertexList;//存储点的链表
private int[][] edges;//邻接矩阵,用来存储边
private int numOfEdges;//边的数目
static int maxResult=0;
public GraphCaravan(int n) {
//初始化矩阵,一维数组,和边的数目
edges=new int[n][n]; //边初始化均为0
vertexList=new ArrayList(n); //n个边
numOfEdges=0;
}
//得到结点的个数
public int getNumOfVertex() {
return vertexList.size();
}
//得到边的数目
public int getNumOfEdges() {
return numOfEdges;
}
//返回结点i的数据
public Object getValueByIndex(int i) {
return vertexList.get(i);
}
//返回v1,v2的权值
public int getWeight(int v1,int v2) {
return edges[v1][v2];
}
//插入结点
public void insertVertex(Object vertex) {
vertexList.add(vertexList.size(),vertex); //add(index,object) 插入对象
}
//插入边
public void insertEdge(int v1,int v2,int weight) {
edges[v1][v2]=weight;
numOfEdges++;
}
//删除边
public void deleteEdge(int v1,int v2) {
edges[v1][v2]=0;
numOfEdges--;
}
//得到第一个邻接结点的下标
public int getFirstNeighbor(int index) {
for(int j=0;j<vertexList.size();j++) {
if (edges[index][j]>0) {
return j;
}
}
return -1;
}
//根据前一个邻接结点的下标来取得下一个邻接结点
public int getNextNeighbor(int v1,int v2) {
for (int j=v2+1;j<vertexList.size();j++) {
if (edges[v1][j]>0) {
return j;
}
}
return -1;
}
/******************
//私有函数,深度优先遍历
private void depthFirstSearch(boolean[] isVisited,int i) {
//首先访问该结点,在控制台打印出来
System.out.print(getValueByIndex(i)+" ");
//置该结点为已访问
isVisited[i]=true;
int w=getFirstNeighbor(i);//
System.out.println("00="+i+" "+w);
while (w!=-1) {
if (!isVisited[w]) {// 没有被访问
depthFirstSearch(isVisited,w);
System.out.println("11="+i+" "+w);
}
w=getNextNeighbor(i, w);
System.out.println("2="+i+" "+w);
}
}
//对外公开函数,深度优先遍历,与其同名私有函数属于方法重载
public void depthFirstSearch(boolean[] isVisited) {
for(int i=0;i<getNumOfVertex();i++) {
//因为对于非连通图来说,并不是通过一个结点就一定可以遍历所有结点的。
if (!isVisited[i]) { //如果没有被访问,则下面开始访问
depthFirstSearch(isVisited,i);
}
}
}
//得到第一个邻接结点的下标
public Set<Integer> getMyFirstNeighbor(int index,boolean[] isVisited,Map<Integer,Integer> map) {
//Map<Integer,Set<Integer>> map=new HashMap<Integer,Set<Integer>>();
Set<Integer> set=new HashSet<Integer>();
for(int j=0;j<vertexList.size();j++) {
if (edges[index][j]>0&&isVisited[j]==false) {
set.add(j);
map.put(j,index);
}
}
// map.put(index,set)
return set;
}
/******************
//私有函数,深度优先遍历
public void myDepthFirstSearch(boolean[] isVisited,int i,Map<Integer,Integer> map) {
//首先访问该结点,在控制台打印出来
// System.out.print(getValueByIndex(i)+" ");
//arry.add(getValueByIndex(i));
//置该结点为已访问
isVisited[i]=true;
Set<Integer> set=getMyFirstNeighbor(i,isVisited,map);
if(set.isEmpty()){//没有值,结束了
System.out.println("已经没有值了,输出了:--start");
int now=i;
int tmp=0;
while(now!=-1){
int last=map.get(now);
if(last!=-1){
tmp=tmp+edges[last][now];
}
System.out.print(getValueByIndex(now)+"->");
now=last;
}
//System.out.println("tmp="+tmp);
if(tmp>maxResult){
maxResult=tmp;
}
System.out.println("\n已经没有值了,输出了:--end ,此时最大为:"+maxResult+"\n");
}
for(Integer w:set){ //遍历set值
if (!isVisited[w]){// 没有被访问
myDepthFirstSearch(isVisited,w,map);
}
// System.out.println("");
//w=getNextNeighbor(i, w);
}
}
public static int cost(int distance){
return 10*distance+distance*(distance+1)/2;
}
public static void addEdge(String tmp, GraphCaravan gc){
String[] ints=tmp.split(" ");
int v1=Integer.parseInt(ints[0]);
int v2=Integer.parseInt(ints[1]);
int v3=Integer.parseInt(ints[2]);
gc.insertEdge(v1-1, v2-1, v3);
gc.insertEdge(v2-1, v1-1, v3);
}
public static void main(String[] args) {
/*
5
1 2 2
1 3 1
2 4 5
2 5 4
int n=5; //表示节点
String labels[]={"1a","2b","c3","4d","5e"};//结点的标识
GraphCaravan gc=new GraphCaravan(n);
for(int i=0;i<labels.length;i++){
// System.out.print(" "+labels[i]);
gc.insertVertex(labels[i]);
}
gc.insertEdge(0, 1, 2);
gc.insertEdge(0,2, 1);
gc.insertEdge(1,3, 5);
gc.insertEdge(1,4, 4);
gc.insertEdge(1,0, 2);
gc.insertEdge(2,0, 1);
gc.insertEdge(3,1, 5);
gc.insertEdge(4,1, 4);
*/
java.util.Scanner sc=new java.util.Scanner(System.in);
int n=Integer.parseInt(sc.nextLine());
GraphCaravan gc=new GraphCaravan(n);
for(int i=0;i<n-1;i++){
String tmp=sc.nextLine();
addEdge(tmp,gc);
}
System.out.println(n);
//String labels[]={"1a","2b","c3","4d","5e"};//结点的标识
for(int i=0;i<n;i++){
// System.out.print(" "+labels[i]);
gc.insertVertex(i+1);
}
for(int i=0;i<n;i++){
System.out.println("深度优先搜索序列为:"+i);
Map<Integer,Integer> map=new HashMap<Integer,Integer>() ;
boolean[] isVisited=new boolean[n]; //默认false
System.out.println("\n");
//gc.depthFirstSearch(isVisited);
map.put(i,-1);
gc.myDepthFirstSearch(isVisited,i,map);
System.out.println();
}
System.out.println("最大为:"+maxResult+" 花费为:"+cost(maxResult));
}
}
282

被折叠的 条评论
为什么被折叠?



