机器学习 - 精度评价
Python sklearn.metrics 提供了很多任务的评价指标,如分类任务的混淆矩阵、平均分类精度、每类分类精度、总体分类精度、F1-score 等;以及回归任务、聚类任务等多种内置函数.
1. 分类 - 混淆矩阵 Confusion Matrix
sklearn.metrics.confusion_matrix
from sklearn.metrics import confusion_matrix
计算混淆矩阵,以估计分类精度.
记混淆矩阵 C ,混淆矩阵元素

本文介绍了机器学习中评估分类性能的重要工具——混淆矩阵。通过sklearn.metrics.confusion_matrix,我们可以计算并分析真实标签与预测标签之间的对应关系,包括真阳性、真阴性、假阳性和假阴性等关键指标,以衡量模型的准确度。
最低0.47元/天 解锁文章

1499

被折叠的 条评论
为什么被折叠?



