学习笔记,仅供参考
1.原理介绍
马尔科夫链是指,具有马尔科夫性质的离散随机变量的集合。马尔科夫性质是指,在随机变量的序列中,下一个状态的概率只由当前状态决定,与之前的状态无关。
借助于马尔科夫链实现数据增强的思想是:在同类文本中,先根据上下子词(文本序列中的每一个字)之间的关系形成马尔科夫链,在马尔科夫链中为每个子词随机找到下一个子词重新组合生成句子。
2.马尔科夫链简单实现
实现马尔科夫链的数据增强,具体代码:
# 制作马尔科夫链
def make_chain(text):
index = 1
chain = {
}
for i in text:
words = i.split()
# 获取前后词的关系,前词作Key,后词作Value
for word in words[index:]:
key = words[index - 1]
if key in chain:
chain[key].append(word)
else:
chain[key] = [word]
index += 1
index =

本文介绍了如何利用马尔科夫链进行数据增强,通过建立文本中子词的前后关系,生成新的句子。首先阐述了马尔科夫链的原理,然后展示了简单的马尔科夫链实现,包括构建马尔科夫链的代码和生成句子的函数。通过运行代码,可以生成接近人类语言的新句子,从而实现数据增强。
最低0.47元/天 解锁文章
400

被折叠的 条评论
为什么被折叠?



