【莫比乌斯函数+除法分块】BZOJ2301(HAOI2011)[Problem b]题解

题目概述

axb,cyd(x,y)=k 的个数。

解题报告

好像很多人说是莫比乌斯反演……但是我感觉只用到了狄利克雷卷积和莫比乌斯函数啊QAQ?

求区间果断容斥,那么先写出答案式子(令 A=Ak,B=Bk ):

i=1Aj=1B[(i,j)=k]i=1Aj=1B[(i,j)=1]i=1Aj=1Be[(i,j)]e=μ1i=1Aj=1Bd|(i,j)μ(d)i=1Aj=1Bd|id|jμ(d)d=1min{A,B}μ(d)AdBd

然后就变成除法分块了QwQ。

示例程序

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=50000;

int te,A,B,C,D,K,mu[maxn+5],p[maxn+5];bool pri[maxn+5];

void Make()
{
    pri[1]=true;mu[1]=1;
    for (int i=2;i<=maxn;i++)
    {
        if (!pri[i]) p[++p[0]]=i,mu[i]=-1;
        for (int j=1,t;j<=p[0]&&(t=i*p[j])<=maxn;j++)
        {
            pri[t]=true;mu[t]=-mu[i];
            if (!(i%p[j])) {mu[t]=0;continue;}
        }
    }
    for (int i=2;i<=maxn;i++) mu[i]+=mu[i-1];
}
inline LL Solve(int A,int B)
{
    LL ans=0;A/=K;B/=K;
    for (int l=1,r;l<=A&&l<=B;l=r+1)
        r=min(A/(A/l),B/(B/l)),ans+=(LL)(mu[r]-mu[l-1])*(A/l)*(B/l);
    return ans;
}
int main()
{
    freopen("program.in","r",stdin);
    freopen("program.out","w",stdout);
    for (Make(),scanf("%d",&te);te;te--)
    {
        scanf("%d%d%d%d%d",&A,&B,&C,&D,&K);A--;C--;
        printf("%lld\n",Solve(B,D)-Solve(A,D)-Solve(B,C)+Solve(A,C));
    }
    return 0;
}
发布了340 篇原创文章 · 获赞 124 · 访问量 18万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览