基于 Dify +大模型(LLM)+ Qwen3模型,输出合同审查智能体(Agent)

        在商业合作与法律事务中,合同审查与起草是高频且专业的需求,传统的人工处理方式效率低、成本高,且容易因疏忽导致法律风险。如今,借助大语言模型(LLM)和低代码AI开发平台,企业可以快速构建私有化、智能化的合同处理助手,实现合同条款解析、风险提示、自动修订等核心功能。本文将详细介绍如何基于Dify平台和Qwen3大模型,从零开发一个高效、安全的企业级合同智能体,涵盖模型微调、法律知识库构建、合规性校验等关键技术,助力企业法务与商务团队降本增效,同时确保数据隐私与法律合规。

以下是基于Dify和Qwen3实现AI合同审查助手的步骤:

环境搭建

  1. 安装依赖

    sudo apt update
    sudo apt install python3-pip git -y
    pip3 install --upgrade pip
  2. 安装vLLM

    pip3 install vllm
  3. 下载Qwen3模型

    pip3 install huggingface_hub
    python3 -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='Qwen/Qwen3-8B', local_dir='./Qwen3-8B')"
  4. 启动vLLM OpenAI API服务

    python3 -m vllm.entrypoints.openai.api_server --model Qwen3-8B --host 0.0.0.0 --port 8000 --dtype half

    服务启动后,模型会加载到指定端口。

配置Dify

  1. 安装Dify

    mkdir dify_app
    cd dify_app
    git clone https://github.com/langgenius/dify.git
    cd dify
    python3 -m venv venv
    source venv/bin/activate
    pip3 install -r requirements.txt
    cp .env.example .env
    python3 main.py
  2. 安装系统依赖

    sudo apt-get update
    sudo apt-get install -y python3 python3-pip python3-venv git build-essential
    sudo apt-get install -y postgresql postgresql-contrib redis-server
    sudo apt-get install -y nodejs npm
  3. 准备数据库: 启动PostgreSQL和Redis服务

    sudo service postgresql start
    sudo service redis-server start

    创建数据库和用户

    sudo -u postgres psql
    CREATE DATABASE dify;
    CREATE USER dify WITH PASSWORD 'dify';
    GRANT ALL PRIVILEGES ON DATABASE dify TO dify;
    \q
  4. 配置环境变量: 在~/dify目录下创建.env文件,内容如下:

    DATABASE_URL=postgresql://dify:dify@localhost:5432/dify
    REDIS_URL=redis://localhost:6379/0
    PORT=5000
  5. 初始化数据库

    cd ~/dify/api
    pip install uv
    uv sync --dev
    uv run flask db upgrade
  6. 启动后端服务

    python3 main.py
  7. 安装并构建前端

    cd web
    npm install
    npm run build
  8. 启动前端服务

    npm install -g serve
    serve -s dist -l 3000

配置Qwen3模型到Dify

  1. 在Dify中配置Qwen3模型

    • 打开浏览器,输入http://localhost

    • 点击右上角“设置”,选择“模型供应商”,选择Ollama进行安装。

    • 安装完成后,在“待分配模型”中选择Qwen3模型,填写以下内容:

      • 模型名称:qwen3:30b-a3b

      • 基础URL:http://172.35.xx.xx:11434(局域网地址,建议不要填写localhost)

      • 模型类型:对话

      • 模型上下文长度:32768

      • 最大token上限:32768

实现合同审查功能

  1. 创建合同审查Agent

    • 在Dify平台上创建一个新的Agent,命名为“合同审查助手”。

    • 设置Agent的功能,比如“合同条款分析”“风险点识别”等。

  2. 训练Agent

    • 收集合同审查相关的语料数据,包括不同类型的合同文本、常见风险点描述、修改建议等。

    • 使用Dify框架对Qwen3模型进行微调,使其更好地适应合同审查任务。

  3. 集成与测试

    • 将训练好的Agent集成到Dify平台中。

    • 上传一份合同文本,测试Agent是否能够准确识别关键条款、发现潜在风险点,并给出合理的修改建议。

通过以上步骤,即可基于Dify和Qwen3实现一个能够发现合同关键问题的AI合同审查助手

### Dify平台集成Agent的基础框架 Dify作为一个强大的开发平台,提供了简易而高效的途径来创建和管理各种类型的智能代理(Agent)[^1]。通过该平台的界面或者API接口,开发者可以快速搭建起基于同需求的应用程序。 #### 创建应用程序 为了启动一个新的项目,在登录后的控制面板中选择新建应用选项。这一步骤允许指定应用名称以及描述信息等基本属性。 #### 配置工具和服务 对于特定的任务处理,比如实现文字转图像的功能,则需引入相应的服务组件。例如文中提到利用SiliconFlow公司的FLUX.1-schnell产品作为绘图引擎,并选用Qwen2.5(7B)这样的大型预训练模型来进行自然语言理解与生成工作[^2]。 ```json { "tool": { "name": "FLUX.1-schnell", "description": "A powerful text-to-image generation tool." }, "model": { "type": "LLM", "version": "Qwen2.5(7B)" } } ``` #### 编写提示词模板 为了让机器更好地理解和响应用户的请求,编写有效的对话引导语句至关重要。这些提示可以帮助定义交互逻辑并指导AI行为模式的设计。 ```plaintext User: 我想要一张关于秋天风景的照片。 Assistant: 好的,正在为您创作一幅描绘秋日景色的画面... ``` #### 实际操作指南 完成上述准备工作之后,便可以通过测试环境验证整个系统的运行状况。上传一些样本数据进行试错调整直至达到满意的效果为止。最后发布上线前还需经过严格的审核流程确保安全性和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值