在商业合作与法律事务中,合同审查与起草是高频且专业的需求,传统的人工处理方式效率低、成本高,且容易因疏忽导致法律风险。如今,借助大语言模型(LLM)和低代码AI开发平台,企业可以快速构建私有化、智能化的合同处理助手,实现合同条款解析、风险提示、自动修订等核心功能。本文将详细介绍如何基于Dify平台和Qwen3大模型,从零开发一个高效、安全的企业级合同智能体,涵盖模型微调、法律知识库构建、合规性校验等关键技术,助力企业法务与商务团队降本增效,同时确保数据隐私与法律合规。
以下是基于Dify和Qwen3实现AI合同审查助手的步骤:
环境搭建
-
安装依赖
sudo apt update sudo apt install python3-pip git -y pip3 install --upgrade pip
-
安装vLLM
pip3 install vllm
-
下载Qwen3模型
pip3 install huggingface_hub python3 -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='Qwen/Qwen3-8B', local_dir='./Qwen3-8B')"
-
启动vLLM OpenAI API服务
python3 -m vllm.entrypoints.openai.api_server --model Qwen3-8B --host 0.0.0.0 --port 8000 --dtype half
服务启动后,模型会加载到指定端口。
配置Dify
-
安装Dify
mkdir dify_app cd dify_app git clone https://github.com/langgenius/dify.git cd dify python3 -m venv venv source venv/bin/activate pip3 install -r requirements.txt cp .env.example .env python3 main.py
-
安装系统依赖
sudo apt-get update sudo apt-get install -y python3 python3-pip python3-venv git build-essential sudo apt-get install -y postgresql postgresql-contrib redis-server sudo apt-get install -y nodejs npm
-
准备数据库: 启动PostgreSQL和Redis服务
sudo service postgresql start sudo service redis-server start
创建数据库和用户
sudo -u postgres psql CREATE DATABASE dify; CREATE USER dify WITH PASSWORD 'dify'; GRANT ALL PRIVILEGES ON DATABASE dify TO dify; \q
-
配置环境变量: 在
~/dify
目录下创建.env
文件,内容如下:DATABASE_URL=postgresql://dify:dify@localhost:5432/dify REDIS_URL=redis://localhost:6379/0 PORT=5000
-
初始化数据库
cd ~/dify/api pip install uv uv sync --dev uv run flask db upgrade
-
启动后端服务
python3 main.py
-
安装并构建前端
cd web npm install npm run build
-
启动前端服务
npm install -g serve serve -s dist -l 3000
配置Qwen3模型到Dify
-
在Dify中配置Qwen3模型:
-
打开浏览器,输入
http://localhost
。 -
点击右上角“设置”,选择“模型供应商”,选择Ollama进行安装。
-
安装完成后,在“待分配模型”中选择Qwen3模型,填写以下内容:
-
模型名称:
qwen3:30b-a3b
-
基础URL:
http://172.35.xx.xx:11434
(局域网地址,建议不要填写localhost) -
模型类型:对话
-
模型上下文长度:
32768
-
最大token上限:
32768
。
-
-
实现合同审查功能
-
创建合同审查Agent:
-
在Dify平台上创建一个新的Agent,命名为“合同审查助手”。
-
设置Agent的功能,比如“合同条款分析”“风险点识别”等。
-
-
训练Agent:
-
收集合同审查相关的语料数据,包括不同类型的合同文本、常见风险点描述、修改建议等。
-
使用Dify框架对Qwen3模型进行微调,使其更好地适应合同审查任务。
-
-
集成与测试:
-
将训练好的Agent集成到Dify平台中。
-
上传一份合同文本,测试Agent是否能够准确识别关键条款、发现潜在风险点,并给出合理的修改建议。
-
通过以上步骤,即可基于Dify和Qwen3实现一个能够发现合同关键问题的AI合同审查助手