深度学习已经得到了人工智能历史上前所未有的关注度和产业投资,但这并不是机器学习的第一次成功。当前工业界依然在大量使用经典的机器学习方法。作为机器学习的子集,深度学习不一定是解决问题的最佳工具,比如,当没有足够的数据或合适的硬件支撑时,深度学习不并适用,或者用经典的机器学习算法已经可以更好地解决问题时。
本章节简要回顾经典的机器学习方法,将深度学习放入机器学习的大背景中,并更好地理解深度学习的起源以及它什么如此重要。
一、认识概率建模方法
概率建模(ProbabiListic ModeLing)是统计学原理在数据分析中的应用。它是最早的机器学习形式之一,至今仍在广泛使用。
最有名的概率算法之一就是朴素贝叶斯算法。朴素贝叶斯是一种基于应用贝叶斯定理的机器学习分类模型,它假设输入数据的特征都是独立的,这是一个很强的假设,或春说“机素的”假设,其各称正来源于此。机素贝叶斯方法比计算机出现得诬要早,在其第一次被计算机实现的П十年前就已经靠人工计算来应用了。
另一个著名的概率模型是逻辑回归(Logistic Regression) 。不要被它的名称所误导,它是一种分类算法,而不是回归算法。与朴素贝叶斯类似,逻辑回归的出现也比计算机早很长时间,但由于它既简单又有效,至今仍然广泛应用于分类领域,而且通常是被优先尝试的分类算法之一。
早期的神经网络
早在20世纪50年代,
本文简要回顾了机器学习的历史,从概率建模方法如朴素贝叶斯和逻辑回归,到核方法的支持向量机,再到决策树、随机森林和梯度提升。深度学习虽然在21世纪初取得突破,但经典方法至今仍有广泛应用。深度学习的兴起得益于硬件进步、大数据和算法框架的发展,如今在计算机感知任务中占据主导地位。
订阅专栏 解锁全文
859

被折叠的 条评论
为什么被折叠?



