机器学习是将输入(比如图像)映射到目标(比如标签“猫”),并建立映射规则(即模型)。在深度学习中,神经网络通过一系列数据变换层来实现这种输入到目标的映射,本章节我们具体来看这种学习过程是如何实现的。
学习内容
1、理解层(Layer)及权重(weight)的概念及作用
2、理解损失函数(Loss function)的作用
3、理解优化器(optimizer)的作用、了解反向传播(back propagation)过程以及梯度下降
4、理解神经网络的工作原理
5、了解常见的神经网络架构
神经网络本质上是一个求解智数的多层数学框架
神经网络的本质是一个求解数的多层数学框架。以图像识别为例,建立一个“猫脸识别”神经网络模型的过程,实际上类似手求一个复合函数的智数:
求解f(x)= y的参数(也叫做权重)
其中,x =(多张猫的图片)
y =猫(即标签)
例如: 输入以下多张图片

神经网络最终得出的是输入数据(如照片)和预期输出标签(如猫)之间的映射规则(核心是权重参数)。
本文深入解析神经网络的工作原理,包括层、权重、损失函数、优化器和反向传播算法的角色,以及常见神经网络架构如多层感知机、卷积神经网络和循环神经网络的应用。通过学习,理解深度学习模型如何通过不断优化权重来实现输入到目标的精确映射。
订阅专栏 解锁全文
6万+

被折叠的 条评论
为什么被折叠?



