(三)人工智能应用--深度学习原理与实战--神经网络的工作原理

本文深入解析神经网络的工作原理,包括层、权重、损失函数、优化器和反向传播算法的角色,以及常见神经网络架构如多层感知机、卷积神经网络和循环神经网络的应用。通过学习,理解深度学习模型如何通过不断优化权重来实现输入到目标的精确映射。
摘要由CSDN通过智能技术生成

机器学习是将输入(比如图像)映射到目标(比如标签“猫”),并建立映射规则(即模型)。在深度学习中,神经网络通过一系列数据变换层来实现这种输入到目标的映射,本章节我们具体来看这种学习过程是如何实现的。

学习内容
1、理解层(Layer)及权重(weight)的概念及作用
2、理解损失函数(Loss function)的作用
3、理解优化器(optimizer)的作用、了解反向传播(back propagation)过程以及梯度下降
4、理解神经网络的工作原理
5、了解常见的神经网络架构

神经网络本质上是一个求解智数的多层数学框架

神经网络的本质是一个求解数的多层数学框架。以图像识别为例,建立一个“猫脸识别”神经网络模型的过程,实际上类似手求一个复合函数的智数:
求解f(x)= y的参数(也叫做权重)
其中,x =(多张猫的图片)
y =猫(即标签)

例如: 输入以下多张图片
请添加图片描述

神经网络最终得出的是输入数据(如照片)和预期输出标签(如猫)之间的映射规则(核心是权重参数)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值